Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

УВАЖАЕМЫЕ ПОДПИСЧИКИ НАШЕГО ЖУРНАЛА!
По техническим причинам «Оптический журнал» не попал в каталог агентства «Роспечать» на II полугодие 2018 г., что делает невозможной подписку на него на почте. Предлагаем оформить подписку на II полугодие 2018 в редакции журнала удобным Вам способом. Стоимость подписки на полугодие сохраняется (6600 руб.).
Связаться с нами можно по т. (812) 315-05-48, Е-mail: beditor@soi.spb.ru

ЭКСПЕРИМЕНТ ПО ИСПОЛЬЗОВАНИЮ ВЫСОКОЧУВСТВИТЕЛЬНОГО ОПТИЧЕСКОГО ВОЛОКОННОГО ДАТЧИКА НА ОСНОВЕ БРЭГГОВСКОЙ РЕШЕТКИ ДЛЯ МОНИТОРИНГА ДЕФОРМАЦИЙ И СТЕПЕНИ КОРРОЗИИ В КОНСТРУКЦИОННЫХ ЭЛЕМЕНТАХ

 

© 2018 г.       Gurpreet Kaur, R. S. Kaler, Naveen Kwatra

Демонстрируется применение эффективного высокочувствительного оптического волоконного датчика на основе брэгговской решетки для определения деформаций и степени коррозии в строительных конструкционных элементах. чувствительность такого оптического датчика увеличена в результате изучения влияния различных профилей решетки, ее длины и показателя преломления сердцевины волокна. Экспериментально показано, что предложенная однородная волоконная брэгговская решетка с показателем преломления сердцевины 1,46 и длиной решетки 50000 мкм обеспечивает наилучшую чувствительность в терминах сдвига длины волны (приблизительно 3 нм). Для проверки достоверности проведено сравнение теоретических расчетов с экспериментальными результатами, показано, что предложенный датчик способен осуществлять мониторинг деформации/коррозии с высокой чувствительностью и скоростью.

Ключевые слова: волоконная брэгговская решетка, чувствительность, коррозия, деформации.

 

Experiment on highly sensitive fiber Bragg grating optical sensor to monitor strain and corrosion in civil structures

© 2018    Gurpreet Kaur*, R. S. Kaler*, and Naveen Kwatra**

*   Department of Electronics and Communication Engineering, Thapar University, Patiala, India, 147002

** Department of Civil Engineering, Thapar University, Patiala, India, 147002

E-mail: gksumman@gmail.com

Submitted 26.04.2016

An efficient and highly sensitive fiber Bragg grating optical sensor is demonstrated to detect the strain and corrosion in civil structures. The sensitivity of fiber Bragg grating optical sensor is enhanced after examining different grating shapes, grating length and refractive indexes of core. The experimental results shows that the proposed uniform grated fiber Bragg grating with 1.46 refractive index and 50000 µm of grating length provides better sensitivity in the term of wavelength shift (approximately 3 nm). The theoretical results are also compared with the experimental results for validation and it is observed that the proposed sensor can monitor strain/corrosion with high sensitivity and speed.

Keywords: fiber Bragg grating, sensitivity, corrosion, strain.

OCIS codes: 060.3735, 230.0230, and 140.0140

 

References

1.         Singh S. Investigation of wavelength division multiplexing ring network topology to enhance the system capacity // Optiс Internat. J. Light and Electron Optics. 2014. V. 125. №. 21. P. 6527–6529.

2.         Zhou Z., Liu W., Huang Y., Wang H., Huang J. M., and Oua J. Optical fiber Bragg grating sensor assembly for 3D strain monitoring and its case study in high way pavement // Mechanical Systems and Signal Proc. 2012. V. 28. P. 36–49.

3.         Lopez R.M., Spirin V.V., Miridonova S., Shlyagina M.G., Beltran G., and Kuzin E.A. Fiber optic distributed sensor for hydrocarbon leak localization based on transmission/reflection measurement // Opt. Laser Technol. 2012. V. 34. № 6. P. 465–469.

4.        Hurtig E., Gro S., and Kuhn. Fiber optic temperature sensing: Application for subsurface and ground temperature measurements // Tectono. Phys. 1996. V. 257. № 1. P. 101–109.

5.         Measures R.M. Structural monitoring with fiber optic technology. San Diego: USA Academic Press, 2001.

6.        Nidhi K.R.S. and Kapur P. Enhancement of sensitivity of the refractive index using ITO coating on LPG // Optoelectronics and Advanced Materials. 2014. V. l8. № 1–2. P. 45–48.

7.         Bao X. and Chen L. Review: Recent progress in distributed fiber optic sensors // Sensors. 2012. V. 12. № 7. P. 8601–8639.

8.        Hill K.O. and Meltz G. Fiber Bragg grating technology fundamentals and overview // J. Lightw. Technol. 1997. V. 15. № 8. P. 1263–1276.

9.        Glisic B. and Inaudi D. Fiber optic methods for structural health monitoring / 1st ed. N.Y.: Wiley, 2007.

10.       Ramakrishnan M., Rajan G., Semenova Y., and Farrell G. Hybrid fiber optic sensor system for measuring the strain, temperature, and thermal strain of composite materials // IEEE Sensors J. 2014. V. 14. № 8. P. 2571.

11.       Frazao O., Carvalho J.P., Ferreira L.A., Araújo F.M., and Santos J.L. Discrimination of strain and temperature using Bragg gratings in micro structured and standard optical fibers // Meas. Sci. Technol. 2005. V. 16. № 10. P. 2109–2113.

12.       Hassan M.R.A., Hassan M.H.A., Dambul K. and Adikan F.R.M. Optical-based sensors for monitoring corrosion of reinforcement rebar via an etched cladding Bragg grating // Sensors. 2012. V. 12. № 11. P. 15820–15826.

13.       Zachary T., Nishino C.K., and Gupta N. Power modulation-based optical sensor for high-sensitivity vibration measurements // IEEE Sensors J. 2014. V. 14. № 7. P. 2153–2158.

14.       Foroozmehr E., Alemohammadan H., and Toyserkani E. Dual-parameter optical fiber sensors for structural health monitoring // IEEE Fibre and Optical Passive Components (WFOPC). 7th Workshop. Montreal, 2011. P. 1–4.

15.       Takeda S., Aoki Y., Ishikawa T., Takeda N., and Kikukawa H. Structural health monitoring of composite wing structure during durability test // Composite Structures. 2006. V. 79. № 1. P. 133–139.

16.       Roveri N., Carcaterra A., Sestieri A. Real time monitoring and wear estimation of railwaytrack with FBG sensors // Mechatronic and Embedded Systems and Applications (MESA). IEEE/ASME. 10th Internat. Conf. Senigallia, 2014. P. 1–6.

17.       Zheng Z., Sun X., Lei Y. Monitoring corrosion of reinforcement in concrete structures via fiber Bragg grating sensors // Mech. Eng. China. 2009. V. 4. № 3. P. 316–319.

18.       Jianghong M., Chen J., Cui L., Jin W., Xu C., and He Y. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors // Sensors, Article. 2015. V. 15. № 4. P. 8866–8883.

19.       Islam M.R., Bagherifaez M., Ali M.M., Chai H.K., Lim K.S., and Ahmad H. Tilted fiber Bragg grating sensors for reinforcement corrosion measurement in marine concrete structure // IEEE Transactions on Instrumentation and Measurement. 2015. V. 64. № 12. P. 3510–3516.

20.      Zhou Z., Liu W., Huang Y., Wang H., He J., Huang M., and Ou J. Optical fiber Bragg grating sensor assembly for 3D strain monitoring and its case study in highway pavement // Mechanical Systems and Signal Proc. 2012. V. 28. P. 36–49.

21.       Li J., Wu J., and Gao J. Corrosion monitoring of concrete structures by optical fiber grating sensing // J. Chin. Soc. Corrosion Protect. 2007. V. 29. P. 109–112.

22.      Grattan S.K.T., Basheer P., Taylor S.E., Zhao W., Sun T., and Grattan K.T.V. Fiber Bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures // J. Phys.: Conf. Series. 2007. V. 76. № 1. P. 012018.

23.      Micron Optics Inc. 1852, Optical sensing instrumentation & Software. ENLIGHT, Century place NE Atlanta, GA 30345 USA.

 

 

Полный текст