Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения


Контакты

Подписка

Карта сайта





Журнал с 19.02.2010 входит в новый «Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора и кандидата наук»
Аннотации (02.2013) : Сравнение Au наносфер, нанотрубок и наноколец, используемых в качестве плазмонных волноводов S-формы в оптическом C-band спектральном диапазоне

Сравнение Au наносфер, нанотрубок и наноколец, используемых в качестве плазмонных волноводов S-формы в оптическом C-band спектральном диапазоне

Broad Comparison between Au Nanospheres, Nanorods and Nanorings as an S-Bend Plasmon Waveguide at Optical C-band Spectrum

 

© 2013 г.    Arash Ahmadivand*; Saeed Golmohammadi**; Ali Rostami** 

 

* Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

** School of Engineering-Emerging Technologies, University of Tabriz, Tabriz, Iran

Е-mail: a_ahmadivand@iau-ahar.ac.ir, sgolmohammadi@tabrizu.ac.ir, arostami@tabrizu.ac.ir

The integration of optical devices demands the fabrication of waveguides for electromagnetic energy below the diffraction limit of light. In this work, we have investigated the possibility of utilizing specific chains of closely spaced noble metal nanoparticles for waveguides beyond diffraction limit. Accordingly, we have employed Au and Ag nanorings in order to transport the optical energy through the Plasmon waveguide at optical C-band spectrum (l ≈ 1550 nm). In proposed waveguides, we try to select the best structure via comparison between their transmission losses and group velocities of propagated energy. Three-dimensional simulations based on Finite-Difference Time-Domain algorithm (FDTD) are used to determine the related geometrical values. It is shown that nanoring’s geometrical tunability and extra degree of freedom (DoFs) in its geometry can cause the optical energy to transport at 1550 nm with higher efficiency and lower losses in comparison with those of the other shapes of nanoparticles such as nanospheres and nanorods.

Keywords: S-Bend, Transmitted Power, Transmission loss, Nanoparticle, Optical energy, Optical communication band.

OCIS Codes: 130.3130, 190.3970, 300.6490.

УДК 543.429; 681.785

Submitted 18.06.2012.

 

References

1.         Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer, 1988.

2.         Kreibig U., Vollmer M. Optical Properties of Metal Clusters; Springer, 1995.

3.         Saleh B.E.A., Teich M.C. Fundamentals of photonics; Wiley, 1991.

4.        Maier S.A., Kik P.G., Atwater H.A. Optical pulse propagation in metal nanoparticle chain waveguides // Phys. Rev. 2002. B. 67. Р. 205402.

5.         Maier S.A., Brongersma M.L., Kik P.G., Meltzer S., Requicha A.A.G., Atwater H.A. Plasmonics-A route to nanoscale optical devices // Adv. Mat. 2001. № 19. Р. 1501–1505.

6.        Jung K.Y., Teixeira F.L., Reano R.M. Au/SiO2 Nanoring Plasmon Waveguides at Optical Communication Band // IEEE J. Lightwave Tech. 2007. № 9. Р. 2757–2764.

7.         Brongersma M.L., Hartman J.W., Atwater H.A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit // Phys. Rev. 2000. B. 62. Р. 16356.

8.        Jackson J.D. Classical Electrodynamics; Wiley & Sons, 1998.

9.        Holmgaard T., Bozhevolnyi S.I., Markey L., Dereux A., Krasavin A.V., Bolger P., Zayast A.V. Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths // Phys. Rev. 2008. B. 78. Р. 165431.

10.       Gendey S.D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics; Morgan& Claypool, 2010.

11.       Taflove A., Hagness S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House, 2000.

12.       Maier S.A. Plasmonics, Fundamentals and applications; Springer, 2007.

13.       Mock J.J., Smith D.R., Schutz S. Local refractive index dependence of Plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003. № 4. Р. 485–491.

14.       Krasavin A.V., Zayats A.V. Passive photonic elements based on dielectric-loaded surface PlasmonPolaritonwaveguides // Appl. Phys. Lett. 2007. № 90. Р. 211101.

 

 

 

Полный текст