Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (02.2020) : ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЧЕСКАЯ АНГИОГРАФИЯ В ДИАГНОСТИКЕ ОФТАЛЬМОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ. ПРОБЛЕМЫ, ПЕРСПЕКТИВЫ (ОБЗОР)

ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЧЕСКАЯ АНГИОГРАФИЯ В ДИАГНОСТИКЕ ОФТАЛЬМОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ. ПРОБЛЕМЫ, ПЕРСПЕКТИВЫ (ОБЗОР)

© 2020 г.      В. А. Серебряков*, доктор физ.-мат. наук; Э. В. Бойко**, *****, доктор мед. наук; М. В. Гацу**, ******, доктор мед. наук; А. С. Измайлов**, ******, доктор мед. наук; Н. А. Калинцева*; М. В. Мелихова**; Г. В. Папаян***, ****, канд. техн. наук

*           Государственный оптический институт им. С.И. Вавилова, Санкт-Петербург

**         МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова», Санкт-Петербург

***       Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, Санкт-Петербург

****     Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-Петербург

*****   Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург

****** СЗГМУ им. И.И. Мечникова,Санкт-Петербург

E-mail: serebryakov@hotbox.ru

УДК 535-15, 544.17, 615.47:617-089, 616.1, 616.8-089, 617.7, 621.372.632, 621.373.826

Поступила в редакцию 28.03.2019

DOI:10.17586/1023-5086-2020-87-02-03-35

Основанная на технологии оптической когерентной томографии, оптическая когерентная томографическая ангиография — диагностика, позволяющая неинвазивно визуализировать in vivo динамику кровотоков с микронным разрешением на глубине до нескольких миллиметров. Аналитический обзор даёт представление о принципах построения и перспективах использования оптической когерентной томографической ангиографии в офтальмологии. На основании сравнения архитектуры современных оптической когерентной томографии и оптической когерентной томографической ангиографии анализируются проблемы анатомической и функциональной диагностики сетчатки в реальном времени. Обсуждаются результаты применения оптической когерентной томографической ангиографии в изучении патогенеза и антиангиогенной терапии возрастной макулодистрофии.

Ключевые слова: оптическая когерентная томография, ангиография, сетчатка, хориоидея, cвип-лазер.

Коды OCIS: 140.3070, 170.1020, 170.3890, 190.4970

 

Литература

1.         Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A., Fujimoto J.G. Optical coherence tomography // Science. 1991. V. 254(5035). Р. 1178–1181.

2.         Magdy M., Mahmoud L., Hagar K. Imaging choroidal neovascular membrane using en face swept-source optical coherence tomography angiography // Clinical Ophthalmology. 2017. V. 11. Р. 1859–1869.

3.         Tuchin V.V. Handbook of optical biomedical diagnostics. Methods. V. 2. WA. USA. Bellingham: SPIEPress PM263, 2016. 688 p.

4.         Шпак А.А. Оптическая когерентная томография: проблемы и решения. М.: Издательство «Офтальмология, 2019. 148 с.

5.         Астахов Ю.С., Белехова С.Г. Оптическая когерентная томография: как все начиналось и современные диагностические возможности методики // Офтальмологические ведомости. 2014. Т. VII. № 2. С. 60–68.

6.         Мелихова М.В., Гацу М.В. Феномен куполообразной макулы // Офтальмологические ведомости. 2018. Т. 11. № 1. С. 71–77.

7.         Киселева О.А., Иомдина Е.Н., Якубова Л.В., Хозиев Д.Д. Решетчатая пластинка склеры при глаукоме: биомеханические особенности и возможности их клинического контроля // Российский офтальмологический журнал. 2018. Т. 11 (3). С. 76–83.

8.        Or C., Sabrosa A.S., Sorour O., Arya M., Waheed N. Use of OCTA, FA, and ultra-widefield imaging in quantifying retinal ischemia // Asia-Pacific J. Ophthalmology. 2018. V. 7(1). Р. 1–6.

9.         Singh A.S.G., Kolbitsch C., Schmoll T., Leitgeb R.A. Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans // Biomed. Opt. Express. 2010. V. 1(4). Р. 1047.

10.       Makita S., Hong Y., Yamanari M., Yatagai T., Yasuno Y. Optical coherence angiography // Opt Express. 2006. V. 14. Р. 7821–7840.

11.       Gao S.S., Jia Y., Zhang M., Su J.P., Liu G., Hwang T.S., Bailey S.T., Huang D. Optical coherence tomography angiography // IOVS. 2016. V. 15. Р. OCT27–OCT36.

12.       Spaide R.F. Volume-rendered angiographic and structural optical coherence tomography // Retina. 2015. V. 35(11). Р. 2181–7.

13.       Chen C., Wang R.K. Optical coherence tomography based angiography // Biomed. Opt. Express. 2017. V. 8(2).P. 1056–1082.

14.       Шаимов Т.Б., Панова И.Е., Шаимов Р.Б., Шаимова В.А., Шаимова Т.А., Фомин А.В. Оптическая когерентная томография-ангиография в диагностике неоваскулярной формы возрастной макулярной дегенерации // Вестник офтальмологии. 2015. № 5. С. 4–12.

15.       Тульцева С.Н., Астахов Ю.С., Руховец А.Г., Титаренко А.И. Информативность ОКТ-ангиографии в сочетании с исследованиями регионарной гемодинамики при окклюзии вен сетчатки // Офтальмологические ведомости. 2017. Т. 10. № 2. С. 40–48.

16.       Аникина М.А., Матненко Т.Ю., Лебедев О.И. Оптическая когерентная томография-ангиография: перспективный метод в офтальмологической диагностике // Практическая медицина. 2018. Т. 3(114). Р. 7–10.

17.       Tan O., Jia Y., Wei E., Huang D. Clinical applications of Doppler OCT and OCT angiography // Optical Coherence Tomography / Ed. by Drexler W., Fujimoto J.G. Springer International Publishing, 2015. Р. 1413–1459.

18.       Miere A., Oubraham H., Amoroso F., Butori P., Astroz P., Semoun O., Bruyere Е., Pedinielli A., Addou-Regnard M., Jung C., Cohen S.Y., Souied E.H. Optical сoherence tomography angiography to distinguish changes of choroidal neovascularization after Anti-VEGF therapy: monthly loading dose versus Pro Re Nata Regimen // J. of Ophthalmology. 2018. Article ID 3751702. Р. 1–7.

19.       Golas L., Schechet S.A., Skondra D., Hariprasad S.M. Developments in intraoperative OCT and heads-up assisted surgical viewing // Retinal Physician. 2018. V. 15. Iss. Jan/Feb. Р. 45–48.

20.      Pfäffle C., Spahr H., Hillmann D., Sudkamp H., Feanke G., Koch P., Hüttmann G. Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction // Biomed. Opt. Express. 2017. V. 8(3). P. 1499.

21.       Poddar R., Migacz J.V., Schwartz D.M., Werner J.S., Gorczynska I. Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate // Biomedical Optics. 2017. V. 22(10). Р. 106018-1-14.

22.      Алябьева Ж.Ю. Новые горизонты сканирующей лазерной офтальмоскопии // Клиническая офтальмология. 2005. № 1. С. 4.

23.      Smith C. Basic confocal microscopy // Current Protocols in Molecular Biology. 2008. P. S81.

24.      Серебряков В.А., Бойко Э.В., Ян А.В. Когерентная томография в диагностике офтальмологических заболеваний. Пособие. СПб.: ВМедА, 2013. 57 c.

25.      Buteikienė D., Paunksnis A., Barzdžiukas V., Žaliūnienė D., Balčiūnienė J.V., Jegelevičius D. Correlations between digital planimetry and optical coherence tomography. Confocal scanning laser ophthalmoscopy in assessment of optic disc parameters // Medicina (Kaunas). 2012. V. 48(3). Р. 150–158.

26.      Cunha-Vaz J., Koh A. (eds). Imaging techniques // ESASO course series. 2018. V. 10. Р. 1–18.

27.       Kernt M., Schaller U.C., Stumpf C., Ulbig M.W., Kampik A., Neubauer A.S. Choroidal pigmented lesions imaged by ultra-wide-field scanning laser ophthalmoscopy with two laser wavelengths (Optomap) // Clinical Ophthalmology. 2010. V. 4. P. 829–836.

28.      Podoleanu A.Gh. Review article: Optical-coherence tomography // The British Journal of Radiology. 2005. V. 178. Р. 976–988.

29.      Maheshwari A., Choma M.A., Izatt J.A. Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal // Biomedical Optics. 2005. V. 10(6). P. 064005.

30.      Fujimoto J., Swanson E. The development, commercialization, and impact of optical coherence tomography // IOVS. 2016. V. 57(9). Р. OCT1–OCT13.

31.       De Boer J.F., Leetgeb R., Wolkowski M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT // Biomed. Optics Express. 2017. V. 8(7). Р. 3248–3280.

32.      Кальянов А.Л., Лычагов В.В., Лякин Д.В., Перепелицына О.А., Рябухо В.П. Оптическая низкокогерентная интерферометрия и томография. Учебное пособие под редакцией проф. Рябухо В.П. Саратов, 2009. 86 c.

33.      Drexler W. Ultrahigh-resolution and functional OCT // Light Source Technology & Applications. Vienna: Medical University, 2005. 58 c.

34.      Drexler W. Ultrahigh-resolution optical coherence tomography // Journal of Biomedical Optics. 2004. V. 9. P. 47–74.

35.      Fercher A.F., Hitzenberger C.K., Kamp G., El-Zaiat S.Y. Measurement of intraocular distances by backscattering spectral interferometry // Opt. Commun. 1995. V. 117. Р. 43–48.

36.      Мазуренко Ю.Т., Папаян Г.В. Способ получения изображений внутренней структуры объектов // Патент РФ № 2184347. 2002. Приоритет от 09.08.2000. (Mazurenko Ju.T., Papajan G.V. Process generating images of internal structure of objects // Patent RU02184347 2002. Grant application 09.08.2000)

37.       Мазуренко Ю.Т., Папаян Г.В. Спектральная гетеродинная томография // Опт. и cпектр. 2004. Т. 96. С. 324–331. (Mazurenko Yu.T., Papayan G.V. Spectral heterodyne tomography // Optics and Spectroscopy. 2004. V. 9(2). P. 268–274).

38.      Leitgeb R., Hitzenberger C.K., Fercher A.F. Performance of fourier domain vs. time domain optical coherence tomography // Opt. Express. 2003. V. 11(8). Р. 889.

39.      De Boer J.F., Cense B., Park B.H., Pierce M.C., Tearney G.J., Bouma B.E. Improved signal-to-noise ratio in spectraldomain compared with time-domain optical coherence tomography // Opt. Lett. 2003. V. 28(21). P. 2067–2069.

40.      Choma M.A., Sarunic M.V., Yang C.H., Izatt J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography // Opt. Express. 2003. V. 11(18). Р. 2183–2189.

41.       Makita S., Fabritius T., Yasuno Y. Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye // Optics Express. 2008. V. 16(12). Р. 8406–20.

42.      Sull A.C., Vuong L.N., Srinivasany V.J., Witkin A.J., Wojtkowski M., Fujimoto J.G., Duker J.S. The evolution of spectral-domain optical coherence tomography // Retina Today. 2008. P. 39–44.

43.      Mazurenko Y. Information aspects of optical coherence tomography // Proc. of SPIE. 2006. V. 6162. P. 616201-1–616201-11.

44.      Klein T., Huber R. High-speed OCT light sources and systems [Invited] // Biomedical Optics Express. 2017. V. 8(2). Р. 828–859.

45.      Götzinger E., Pircher M., Leitgeb R.A., Hitzenberger С.K. High speed full range complex spectral domain optical coherence tomography // Opt. Express. 2005. V. 13(2). Р. 583–594.

46.      Fercher A.F., Leitgeb R., Hitzenberger C.K., Sattmann H., Wojtkowski M. Complex spectral interferometry OCT // Proc. of SPIE. 1999. V. 3564. Р. 173–178.

47.       Vakhtin A.B., Peterson К.A., Wood W.R., Kane D.J. Differential spectral interferometry: an imaging technique for biomedical applications // Optics Letters. 2003. V. 28(15). Р.1332–1334.

48.      Poddar R., Migacz J.V., Schwartz D.M., Werner J.S., Gorczynska I. Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate // Biomedical Optics. 2017. V. 22(10). Р. 106018-1–14.

49.      Kocaoglu O.P., Turner T.L., Liu Z., Miller D.T. Adaptive optics optical coherence tomography at 1 MHz // Biomed. Opt. Express. 2014. V. 5(12). Р. 4186.

50.      Huber R., Wojtkowski M., Fujimoto J.G. Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography // Optics Express. 2006. V. 14(8). Р. 3225–3227.

51.       Eigenwillig Ch.M. New rapidly wavelength-swept light sources for optical coherence tomography and picosecond pulse generation // Dissertation an der Fakultät für Physik der Ludwig-Maximilians-Universität. München, den 14.08.2012. S. 162.

52.      Huber R., Adler D.C., Fujimoto J.G. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s // Optics Letters. 2006. V. 31(20). Р. 2975–2977.

53.      Jun C., Villiger M., Oh W., Bouma B.E. All-fiber wavelength swept ring laser based on Fabry–Perot filter for optical frequency domain imaging // Оpt Express. 2014. V. 22(21). P.25805.

54.      Wieser W., Biedermann B.R., Klein T., Eigenwillig C.M., Huber R. Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second // Optics Express. 2010. V. 18(14). Р. 14685–14704.

55.      Gorczynska I., Migacz J.V., Zawadzki R.J., Capps A.G., Werner J.S. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid // Biomed. Opt.Express. 2016. V. 7(3). Р. 911–942.

56.      Dhalla Al-H., Izatt J.A. Сomplete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line // Biomedical Optics Express. 2011. V. 2(5). Р. 1218–1232.

57.       Dhalla Al-H., Nankivil D., Izatt J.A. Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival //Biomedical Optics Express. 2012. V. 3(3). Р. 633–649.

58.      Grulkowski I., Manzanera S., Cwiklinski L., Sobczuk F., Karnowski K., Artal P. Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye //Optica. 2018. V. 5(1). Р. 52–59.

59.      Tao Y.K., Srivastava S.K., Ehlers J.P. Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers // Biomed. Opt. Express. 2014. V. 5(6). Р. 1877–1885.

60.      Dhalla A., Nankivil D., Bustamante T., Kuo A., Izatt J.A. Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival // Optics Letters. 2012. V. 37(11). P. 1883–1885.

61.       FDML-1060 /1.5 MHz swept laser source // Optores. 2015. ProductInfo. (www.optores.com, электронныйресурс)

62.      Kolb J.P., Draxinger W., Klee J., Pfeiffer T., Eibl M., Klein T., Wieser W., Huber R. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates // PLoS ONE. 2019. V. 14(3): e0213144. Р. 1–20.

63.      Tozburun S., Siddiqu M., Vakoc B.J. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography // Optics Express. 2014. V. 22(3). Р. 3414.

64.      Tozburun S., Blatter C., Siddiqui M., Meijer E.F.J., Vakoc B.J. Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser // Biomedical Optics Express. 2018. V. 9. No. 3. Р. 952–961.

65.      Khazaeinezhad R., Siddiqui M., Vakoc C.B.J. 16 MHz wavelength-swept and wavelength-stepped laser architectures based on stretched-pulse active mode locking with a single continuously chirped fiber Bragg grating // Optics Letters. 2017. V. 42(10). Р. 2046–2049.

66.      Wang Z., Lee H.C., Vermeulen D., Chen L., Nielsen T., Park S.Y., Ghaemi A., Swanson E., Doerr C., Fujimoto J. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection // Biomed Opt Exp. 2015. V. 6(7). Р. 2562–2574.

67.       Kesia A. Section 510(k) // Carl Zeiss Meditec Inc. Oct. 26. 2016. Р. 7.

68.      ГОСТ «Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий». М. 1996. (http://docs.cntd.ru/document/gost-r-50723-94, электронный ресурс)

69.      E. C. (IEC), “Safety of laser products,” in IEC 60825–1 (3rd edition 2014).

70.      Sousa D.C., Breda J., Pinto L.A. Optical coherence tomography angiography // Eye Wiki / Ed. by Breda J. MD. May 26. 2017. P. 43–82.

71.       Серебряков В.А., Бойко Э.В., Ян А.В. Оптико-акустический мониторинг температуры сетчатки при лазерной терапии в режиме реального времени // Оптический журнал. 2014. V. 81(6). P. 14–26. (Journal of Optical Technology. 2014. V. 81(6). P. 312) 

72.       Coleman D.J., Silverman R.H., Chabi A., Rondeau M., Shung K.K., Cannata J., Lincoff H. High-resolution ultrasonic imaging of the posterior segment // Ophthalmology. 2004. V. 111. Р. 1344–1351.

73.       Silverman R.H., Ketterling J.A., Mamou J., Coleman D.J. Improved high-resolution ultrasonic imaging of the eye // Arch Ophthalmol. 2008. V. 126(1). Р. 94–97.

74.       Meng J., Ding Z. Optical Doppler tomography with short-time Fourier transform and Hilbert transform // Proc. of SPIE. 2007. V. 6826. Р. 682602-1.

75.       Wang R.K. Optical microangiography: a label free 3D imaging technology to visualize and quantify blood circulations within tissue beds in vivo // IEEE J. Sel. Top. Quantum Electron. 2010. V. 16(3). Р. 545–554.

76.       Kim D., Fingler Y.J., Werner J.S., Schwartz D.M., Fraser S.E., Zawadzki R.J. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography //Biomed. Opt. Express. 2011. V. 2(6). Р. 1503–1513.

77.       Chen Z., Zhao Y., Srinivas S.M., Nelson J.S., Prakash N., Frostig R.D. Optical doppler tomography // IEEE J. Sel. Top. Quantum Electron. 1999. V. 5(4). Р. 1134.

78.      Zhao Y., Chen Z., Saxer C., Xiang S., de Boer J.F., Nelson J.S. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity // Optics Letters. 2000. V. 25(2). Р. 114–116.

79.       Schaefer A.W., Reynolds J.J., Marks D.L., Boppart S.A. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography // IEEE Transactions on Biomechanical Engineering. 2004. V. 51(1). P. 186–190.

80.      Liu G., Chen Z. Phase-resolved doppler optical coherence tomography // Sel. Top. in Optical Coherence Tomography. ISBN: 978-953-51-0034-8. 2012. P. 41–64.

81.       An L., Qin J., Wang R.K. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds // Opt. Express. 2010. V. 18(8). Р. 8220.

82.      Braaf B., Vermeer K.A., Vienola K.V., de Boer J.F. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans // Opt. Express. 2012. V. 20(18). Р. 20516–20534.

83.      Makita S., Fabritiusa T., Yasunoa Y. Blood flow imaging at deep posterior human eye using 1 µm spectral-domain optical coherence tomography // Proc. of SPIE. 2009. V. 7168. P. 716808-1.

84.      Zhang. J., Nelson J.S., Chen Z.P. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator // Opt. Lett. 2005. V. 30(2). Р. 147.

85.      Kim D.Y., Werner J.S., Zawadzki R.J. Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography // J. Biomed. Opt. 2010. V. 15(5). P. 056011.

86.      Motaghiannezam S.M.R., Koos D., Fraser S.E. Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization // Biomed. Optics. 2012. V. 17(2). Р. 026011.

87.      Choudhury N., Chen F., Shi X., Nuttall A.L., Wang R.K. Volumetric imaging of blood flow within cochlea in gerbil in vivo // IEEE J. Sel. Top. Quant. Electron. 2009. V. 99. P. 1–6.

88.      Zhang A., Zhang Q., Chen C., Wang R.K. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison // Biomedical Optics. 2015. V. 20(10). Р. 100901-1–13.

89.      Ren H., Wang Y., Nelson J. S., Chen Z. Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick cohrioallantoic membrane // Proc. of SPIE. 2003. V. 4956. Р. 225–231.

90.      Wang R.K., Ma Z., Kirkpatrick. S.J. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue // Appl. Phys. Lett. 2006. V. 89(14). Р. 144103.

91.       Fonseca-Pinto R.A New tool for nonstationary and nonlinear signals: The Hilbert–Huang transform in biomedical applications // Biomed Engineering Trends in Electronics, Communications and Software. Chapter 15. 2011. Р. 481–504.

92.      Zhao Y., Chen Z., Ding Z., Ren H., Nelson J.S. Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation // Optics Letters. 2002. V. 27(2). Р. 98–100.

93.      Wang R.K., Subhash H. Optical microangiography: Theory and application // 2012. Chapter 10. P. 197–258. DOI: 10.1002/9783527651238.ch10.

94.      Huang S., Shen M., Zhu D., Chen Q., Shi C., Chen Z., Lu F. In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT // Biomed. Opt. Express. 2016. V. 7(2). Р. 663–676.

95.      Ruminski D.L., Bukowska D., Gorczynska I. Angiogram visualization and total velocity blood flow assessment based on intensity information analysis of OCT data // Proc. of SPIE. 2012. V. 8213. Р. 821306-1.

96.      Reif R., Wang R.K. Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography // Quant Imaging Med Surg. 2012. V. 2(3). Р. 207–212.

97.       Fingler J., Schwartz D., Yang C., Fraser S.E. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography // Opt Express. 2007. V. 15(20). Р. 12636–12653.

98.      Liu G., Jia Y., Pechauer A.D., ChandwaniI R., Huang D. Split-spectrum phase-gradient optical coherence tomography angiography // Biomed. Opt. Express. 2016. V. 7(8). Р. 2943–2954.

99.      Tao Y.K., Davis A.M., Izatt J.A. Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform // Opt. Express. 2008. V. 16(16). P. 12350–12361.

100.    Reif R., Qin J., An L., Zhi Z., Dziennis S., Wang R. Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system // Int. J. Biomed. Imaging. 2012. ArticleID 509783. 11 р.

101.     Xu J., Song S., Li Y., Wang R. Complex-based OCT angiography algorithm recovers microvascular information superior to amplitude or phase-based algorithm in phase-stable systems // Phys. Med. Biol. 2018. V. 63(1). Р. 1–29.

102.    Jia Y., Tan O., Tokayer J., Potsaid B., Wang Y., Liu J.J., Kraus M.F., Subhash H., Fujimoto J.G., Hornegger J., Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography // Opt. Express. 2012. V. 20(4). P. 4710–4725.

103.    Li X.-X., Wu W., Zhou H., Deng J.-J., Zhao M.-Y., Qian T.-W., Yan C., Xu X., Yu S.-Q. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance // Int J Ophthalmol. 2018. V. 11(11). Р. 1784–1795.

104.    Munk M.R., Giannakaki-Zimmermann H., Berger L., Huf W., Ebneter A., Wolf S., Zinkernagel M.S. OCT-angiography: A qualitative and quantitative comparison of 4 OCT-A devices // PLOS ONE. 2017. V. 12(5). Р. 1–14.

105.    Cole E.D., Duker J.S. OCT technology: Will we be “swept” away? // Review of ophtalmology. 7 April 2017. P. 12–18.

106.    Zhang Q., Zheng F., Motulsky E.H., Gregori G., Chu Z., Chen C.-L., Li C., de Sisternes L., Durbin M., Rosenfeld P.J., Wang R.K. A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography // Invest Ophthalmol Vis Sci. 2018. V. 59. Р. 203–211. 

107.     Spaide R., Klancnik Jr.J., Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography // JAMA Ophthalmology. 2015. V. 133(1). Р. 45–50.

108.    Campbel J.P., Zhang M., Hwang T.S., Bailey S.T., Wilson D.J., Jia Y., Huang D. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography // Scientific Reports. 2017. V. 7. № 42201. 11 р.

109.    Spaide R.F., Curcio C.A. Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes // JAMA Ophthalmology. 2017. Р. E1–E4.

110.     Carl Zeiss Meditec Inc. PLEX Elite 9000 // www.zeiss.commed. 2016.

111.     Kolb J.P., Klein T., Kufner C.L., Wieser W., Neubauer A. S., Huber R. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle // Biomed. Opt. Express. 2015. V. 6(5). Р. 1534–1552.

112.     Popescu D., Hewko M.D., Sowa M.G. Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample // Opt. Commun. 2007. V. 269. Р. 247–251.

113.     Fingler J., Schwartz D., Yang C., Fraser S.E. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography // Optics Express. 2007. V. 15(20). Р. 12635–12653.

114.     Zhang Q., Huang Y., Zhang T., Kubach S., An L., Laron M., Sharma U., Wang R.K. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking // J. Biomed. Opt. 2015. V. 20(6). Р. 066008-1–9.

115.     Kraus M.F., Potsaid B., Mayer M.A., Bock R., Baumann B., Liu J.J., Hornegger J., Fujimoto J.G. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns // Biomed. Opt. Express. 2012. V. 3(6). Р. 1182.

116.     Xu J., Wei X., Yu L., Zhang C., Xu J., Wong K.K.Y., Tsia K.K. High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch // Biomed. Opt. Express. 2015. V. 6. No. 4. Р. 1340–1350.

117.     Bussel I. Exploring the clinical utility of swept-source OCT // Ophthalmology Management. Glaucoma Physician. 2017. V. 21. P. 36–39.

118.     Baumann B., Potsaid B., Kraus M.F., Liu J.J., Huang D., Hornegger J., Cable A., Duker J.S., Fujimoto J.G. Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT //Express. 2011. V. 2(6). Р. 1539.

119.     Li A., Du C., Pan Y. Volumetric absolute blood flow measurement with fully connected vasculature network using Doppler optical coherence tomography // Proc. SPIE 10867. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII. 2019. V. 108672I. P. 21–54.

120.    Shahlaee A., Pefkianaki M., Hsu J., Ho A.C. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography // Am. J. Ophthalmol. 2016. V. 161. Р. 50–55.

121.     Liu R., Qin J., Wang R.K. Motion-contrast laser speckle imaging of microcirculation within tissue beds in vivo // Biomed Optics. 2013. V. 18(6). Р. 060508-1–3.

122.     Salas M., Drexler W., Levecq X., Lamory B., Ritter M., Prager S., Hafner J., Schmidt-Erfurth U., Pircher M. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting // Biomed. Opt. Express. 2016. V. 7(5). Р. 1783–1796.

123.     Salas M., Augustin M., Ginner L., Kumar A., Baumann B., Leitgeb R., Drexler W., Prager S., Hafner J., Schmidt-Еrfurth U., Pircher M. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics // Biomed. Opt. Express. 2017. V. 8(1). Р. 207–222.

124.     Шмидт У., Салас М., Лайттеб Р. Не в бровь, а в глаз // euronews.com. Футурис. Университетская клиника. Вена. Австрия. 9 ноября 2018.

125.     Witkin A.J., Vuong L.N., Srinivasan V.J., Gorczynska I., Reichel E., Baumal C.R., Rogers A., Schuman J., Fujimoto J.G., Duker J.S. High-speed ultrahigh resolution optical coherence tomography before and after Ranibizumab for age-related macular degeneration // Ophthalmology. 2009. V. 116(5). Р. 956–963.

126.     Zheng F., Zhang Q., Motulsky Е.H., Dias J.R., Chen C., Chu Z., Miller A.R., Feuer W., Gregori G., Kubach S., Durbin M.K., Wang R.K., Rosenfeld P.J. Comparison of neovascular lesion area measurements from different swept-source OCT angiographic scan patterns in age-related macular degeneration // IOVS. 2017. V. 58. Р. 5098–5104.

127.     Измайлов А.С. Новые методы диагностики и лечения возрастной макулодистрофии // Офтальмология. 2010. Т. 7. № 3. С. 32–35.

128.    Souied E.H., Miere A., Cohen Y., Semoun O., Querques G. Optical coherence tomography angiography of fibrosis in age-related macular degeneration // OCT Angiography in Retinal and Macular Diseases. DevOphthalmol / Ed. by Bandello F., Souied E.H., Querques G. Basel. Karger. 2016. V. 56. Р. 86–90.

129.     Gong J., Yu S., Gong Y., Wang F., Sun X. The diagnostic accuracy of optical coherence tomography angiography for neovascular age-related macular degeneration: A comparison with fundus fluorescein angiography // Ophthalmology. 2016. Article ID 7521478. Р. 1–8.

130.    Spaide R. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization // Am J Ophthalmol. 2015. V. 160(1). P. 6–16.

131.     Ratnayake K., Payton J.L., Lakmal O., Karunarathne A. Blue light excited retinal intercepts cellular signaling // Scientific Reports. 2018. V. 8:10207. Р. 1–16.

132.     Серебряков В.А., Папаян Г.В., Астахов Ю.С., Овнанян А.Ю. Альтернативный подход к лазерным методам лечения сосудистых патологий глаза // Оптическийжурнал. 2014. Т. 81(11). С. 15–30. (J. Optical Technology. 2014. V. 81(11). P. 631–641).

133.     Veritti D., Sarao V., Lanzetta P. Update on combination therapy in wet age-related macular degeneration // Expert Rev Ophthalmol. 2010. V. 5(5). Р. 681.

134.     Mariampillai A. Speckle variance detection of microvasculature using swept-source optical coherence tomography // Optics Letters. 2008. V. 33(13). Р. 1530.

135.     Koh A., Lee W.K., Chen L.-J., Chen S.-J., Hashad Y., Kim H., Lai T.Y., Pilz S., Ruamviboonsuk P., Ptokaji E., Weisberger А., Lim T.H. Everest study // Retina. 2012. V. 32(8). Р. 1453–1464.

136.     Rishi E., Rishi P., Sharma V., Koundanya V., Athanikar R. Long-term outcomes of combination photodynamic therapy with ranibizumab or bevacizumab for treatment of wet age-related macular degeneration // Ophthalmology. 2016. V. 9(2). Р. 87–92.

137.     Тульцева С.Н., Астахов Ю.С., Нечипоренко П.А., Овнанян А.Ю. Широкопольная флуоресцентная ангиография при окклюзиях вен сетчатки: новый взгляд на известное заболевание // Актуальные проблемы лазерной медицины. Сб. Научных трудов под ред. Петрищева Н.Н. СПб. 2016. С. 36–46.

138.    Sing S.R., Ani J.C. Decoding EVEREST II and PLANET // Retinal Physician. 2018. V. 15. Р. 40, 42, 61.

139.     Ishibazawa A., Mehta N., Sorour O., Braun P., Martin S., Alibhai A.Y., Saifuddin A., Arya M., Baumal C.R., Duker J.S., Waheed N.K. Accuracy and reliability in differentiating retinal arteries and veins using wide field en face OCT angiography // Trans Vis Sci Tech. 2019. V. 8(3):60, https://doi.org/10.1167/tvst.8.3.60

140.    Darwish A. OCT angiography for the evaluation of wet age related macular degeneration // EC Ophthalmology. 2017. V. 6.1. P. 6-18.

 

 

Полный текст