DOI: 10.17586/1023-5086-2023-90-04-18-34
УДК 535.421
Михаил Константинович Москвин1*, Надежда Николаевна Щедрина2, Артур Джуракулович Долгополов3, Евгений Витальевич Прокофьев4, Валерий Витальевич Романов5, Дмитрий Андреевич Синев6, Вадим Павлович Вейко7, Галина Викторовна Одинцова8
Университет ИТМО, Санкт-Петербург, Россия
1mkmoskvin@itmo.ru https://orcid.org/0000-0001-7399-7022
2schedrina.nadezda@itmo.ru https://orcid.org/0000-0002-1517-1043
3addolgopolov@itmo.ru https://orcid.org/0000-0002-9548-791X
4zhenya.prokofev.1998@mail.ru https://orcid.org/0000-0002-1048-6038
5vvromanov@itmo.ru https://orcid.org/0000-0003-1468-9438
6sinev@itmo.ru https://orcid.org/0000-0002-6274-1491
7vpveiko@itmo.ru https://orcid.org/0000-0001-6071-3449
8gvodintsova@itmo.ru https://orcid.org/0000-0001-9581-4290
Аннотация
Предмет исследования. В работе исследованы методы формирования топологии элементов на основе лазерно-индуцированных периодических поверхностных структур для реализации различных визуальных эффектов и структурных признаков в защитной голограмме, записанной непосредственно на поверхности нержавеющей стали AISI 430. Цель работы. Оптимизация процесса записи изображений с помощью лазерно-индуцированных периодических поверхностных структур на массивном металле при создании динамических изображений для решения задач защитной голографии. Метод. Метод основан на формировании лазерно-индуцированных периодических поверхностных структур под воздействием сканирующего лазерного излучения при одновременном повороте поляризации лазерного излучения. Процесс записи реализован при помощи излучения волоконного наносекундного лазера c длиной волны 1,064 мкм в 2-х координатной сканирующей системе с объективом плоского поля. Основные результаты. Разработана методика создания защитной голограммы, состоящей из набора элементарных ячеек, заполненных дифракционными микрорешётками с различной пространственной ориентацией. Выявлены основные факторы влияния на пространственную ориентацию лазерно-индуцированных периодических поверхностных структур при формировании структур с заданной топологией и наблюдаемыми визуальными динамическими эффектами на основе элементарных дифракционных микрорешётках: поляризация излучения и траектория сканирования пучка. Показано, что период дифракционных микрорешёток в рассматриваемом случае составляет около 1 мкм и равен длине волны воздействующего лазерного излучения. Практическая значимость. Предложенный в работе метод формирования дифракционных микрорешёток позволяет получать голографические элементы/изображения с различной пространственной топологией, различными визуальными и структурными признаками, отвечающими требованиям, предъявляемым к современным защитным голограммам в основных областях их применения.
Ключевые слова: лазерно-индуцированные периодические поверхностные структуры, защитная голограмма, дифракционная решётка
Благодарность: исследование выполнено при поддержке Российского научного фонда (Проект № 21-79-10241).
Ссылка для цитирования: Москвин М.К., Щедрина Н.Н., Долгополов А.Д., Прокофьев Е.В., Романов В.В., Синев Д.А., Вейко В.П., Одинцова Г.В. Лазерное формирование периодических структур как метод одноэтапного синтеза защитных голограмм // Оптический журнал. 2023. Т. 90. № 4. С. 18–34. http://doi.org/10.17586/1023-5086-2023-90-04-18-34
Коды OCIS: 090.5640. 050.1950.
Periodic structures laser formation as a method of one-stage production of security holograms
Mikhail Moskvin1*, Nadezhda Shchedrina2, Arthur Dolgopolov3, Evgeny Prokofiev4, Valery Romanov5, Dmitry Sinev6, Vadim Veiko7, Galina Odintsova8
ITMO University, Saint-Petersburg, Russia
1mkmoskvin@itmo.ru https://orcid.org/0000-0001-7399-7022
2schedrina.nadezda@itmo.ru https://orcid.org/0000-0002-1517-1043
3addolgopolov@itmo.ru https://orcid.org/0000-0002-9548-791X
4zhenya.prokofev.1998@mail.ru https://orcid.org/0000-0002-1048-6038
5vvromanov@itmo.ru https://orcid.org/0000-0003-1468-9438
6sinev@itmo.ru https://orcid.org/0000-0002-6274-1491
7vpveiko@itmo.ru https://orcid.org/0000-0001-6071-3449
8gvodintsova@itmo.ru https://orcid.org/0000-0001-9581-4290
Abstract
Subject of study. In this paper, methods of topology formation of elements based on laser-induced periodic surface structures for the implementation of various visual effects and structural features in a security hologram recorded directly on the surface of AISI 430 stainless steel are studied. The purpose of the work. The process optimization of recording images based on laser-induced periodic surface structures on bulk metal for creating dynamic images for solving problems of security holography. Method. The method is based on the formation of laser-induced periodic surface structures under the action of scanning laser radiation with simultaneous rotation of the polarization of laser radiation. The recording process is implemented using nanosecond fiber laser radiation with 1.064 µm wavelength, in a 2-dimensional scanning system with a flat field objective. Main results. A technique has been developed for creating a protective hologram consisting of a set of laser prints filled with diffractive microgratings with different spatial orientations. The main factors of influence on the laser-induced periodic surface structures spatial orientation during the formation of structures with a given topology and observed visual dynamic effects based on elementary diffractive microgratings are revealed: radiation polarization and beam scanning trajectory. It is shown that the period of micro-diffraction gratings is equal to the wavelength of the acting laser radiation and is about 1 µm. Practical significance. The method proposed in this work for the elementary diffractive microgratings formation makes it possible to obtain holographic elements/images with different spatial topology, various visual and structural features which meet the requirements for modern security holograms in their main areas of application.
Keywords: laser-induced periodic surface structures, security hologram, diffraction grating
Acknowledgment: the study was supported by the Russian Science Foundation (Project № 21-79-10241).
For citation: Moskvin M.K., Shchedrina N.N., Dolgopolov A.D., Prokofiev E.V., Romanov V.V., Sinev D.A., Veiko V.P., Odintsova V.P. Periodic structures laser formation as a method of one-stage production of security holograms [In Russia] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 18–34. http://doi.org/10.17586/1023-5086-2023-90-04-18-34
OCIS сodes: 090.5640. 050.1950.
Список источников
1. Денисюк Ю.Н. Мой путь в голографии / Ю.Н. Денисюк — основоположник отечественной голографии // Сборник трудов Всероссийского семинара. СПб: СПбГУ ИТМО, 2007. С. 7–14.
2. Gabor D. Holography, 1948–1971 // Science. 1972. V. 177. № 4046. P. 299–313. https://doi.org/10.1126/science.177.4046.299
3. Leith E.N., Upatnieks J. Reconstructed wavefronts and communication theory // JOSA. 1962. V. 52. № 10. P. 1123–1130. https://doi.org/10.1364/JOSA.52.001123
4. Benton S.A., Bove Jr.V.M. Holographic imaging. Hoboken.: John Wiley & Sons, 2008. 173 p. https://doi.org/10.1002/9780470224137
5. Lu Y.T., Chi S. Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications // Optik. 2003. V. 114. № 4. P. 161–167. https://doi.org/10.1078/0030-4026-00241
6. Bulanovs A., Gerbreders V., Paschkevich V., Teteris J. Dot-matrix holographic recording in amorphous chalcogenide films // Advanced Optical Materials, Technologies, and Devices. SPIE. 2007. V. 6596. P. 128–131. https://doi.org/10.1117/12.726405
7. Firsov A., Firsov A., Loechel B., Erko A., Svintsov A., Zaitsev S. Fabrication of digital rainbow holograms and 3D imaging using SEM based e-beam lithography // Optics Express. 2014. V. 22. № 23. P. 28756–28770. https://doi.org/10.1364/OE.22.028756
8. Zhu X., Yan W., Levy U., Mortensen N.A., Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces // Science advances. 2017. V. 3. № 5. P. e1602487. https://doi.org/10.1126/sciadv.160248
9. Wlodarczyk K.L., Ardron M., Waddie, A.J., Dunn A., Kidd M.D., Weston N.J., Hand D.P. Laser microsculpting for the generation of robust diffractive security markings on the surface of metals // Journal of Materials Processing Technology. 2015. V. 222. P. 206–218. https://doi.org/10.1016/j.jmatprotec.2015.03.001
10. Tamulevičius T., Juodėnas M., Klinavičius T., Paulauskas A., Jankauskas K., Ostreika A., Žutautas A., Tamulevičiu, S. Dot-matrix hologram rendering algorithm and its validation through direct laser interference patterning // Scientific reports. 2018. V. 8. № 1. P. 1–11. https://doi.org/10.1038/s41598-018-32294-5
11. Lasagni A.F., Gachot C., Trinh K.E., Hans M., Rosenkranz A., Roch T., Mücklich F. Direct laser interference patterning, 20 years of development: From the basics to industrial applications // Laser-based micro-and nanoprocessing XI. SPIE. 2017. V. 10092. № 3. P. 186–196. https://doi.org/10.1117/12.2252595
12. Voisiat B., Wang W., Holzhey M., Lasagni A.F. Improving the homogeneity of diffraction based colours by fabricating periodic patterns with gradient spatial period using Direct Laser Interference Patterning // Scientific reports. 2019. V. 9. № 1. P. 1–9. https://doi.org/10.1038/s41598-019-44212-4
13. Birnbaum M. Semiconductor surface damage produced by ruby lasers // Journal of Applied Physics. 1965. V. 36. № 11. P. 3688–3689. https://doi.org/10.1063/1.1703071
14. Akhmanov S.A., Emel'yanov V.I., Koroteev N.I., Seminogov V.N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics // Soviet Physics Uspekhi. 1985. V. 28. № 12. P. 1084. https://doi.org/10.1070/PU1985v028n12ABEH003986
15. Rudenko A., Mauclair C., Garrelie F., Stoian R., Colombier, J.P. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations // Physical Review B. 2019. V. 99. № 23. P. 235412. https://doi.org/10.1103/PhysRevB.99.235412
16. Reif J., Varlamova O., Varlamov S., Bestehorn M. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation // AIP Conference Proceedings. American Institute of Physics. 2012. V. 1464. № 1. P. 428–441. https://doi.org/10.1063/1.4739897
17. Bonse J., Gräf S. Maxwell meets Marangoni — a review of theories on laser-induced periodic surface structures // Laser & Photonics Reviews. 2020. V. 14. № 10. P. 2000215. https://doi.org/10.1002/lpor.202000215
18. Dusser B., Sagan Z., Soder H., Faure N., Colombier J.P., Jourlin M., Audouard E. Controlled nanostructrures formation by ultrafast laser pulses for color marking // Optics express. 2010. V. 18. № 3. P. 2913–2924. https://doi.org/10.1007/s00339-012-6849-y
19. Ionin A.A., Kudryashov S.I., Makarov S.V., Seleznev L.V., Sinitsyn D.V., Golosov E.V., Golosova O.A., Kolobov Y.R., Ligachev A.E. Femtosecond laser color marking of metal and semiconductor surfaces // Applied Physics A. 2012. V. 107. № 2. P. 301–305. https://doi.org/10.1007/s00339-012-6849-y
20. Tan B., Venkatakrishnan K. A femtosecond laser-induced periodical surface structure on crystalline silicon // Journal of Micromechanics and Microengineering. 2006. V. 16. № 5. P. 1080. https://doi.org/10.1088/0960-1317/16/5/029
21. Vorobyev A.Y., Guo C. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals // Applied Physics A. 2007. V. 86. № 3. P. 321–324. https://doi.org/10.1007/s00339-006-3800-0
22. Bonse J., Krüger J., Höhm S., Rosenfeld A. Femtosecond laser-induced periodic surface structures // Journal of Laser Applications. 2012. V. 24. № 4. P. 042006. https://doi.org/10.2351/1.4712658
23. Gräf S., Kunz C., Müller F.A. Formation and properties of laser-induced periodic surface structures on different glasses // Materials. 2017. V. 10. № 8. V. 933. https://doi.org/10.3390/ma10080933
24. Rebollar E., Castillejo M., Ezquerra T.A. Laser induced periodic surface structures on polymer films: From fundamentals to applications // European Polymer Journal. 2015. V. 73. P. 162–174. https://doi.org/10.1016/j.eurpolymj.2015.10.012
25. Long J., Fan P., Zhong M., Zhang H., Xie Y., Lin C. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures // Applied Surface Science. 2014. V. 311. P. 461–467. https://doi.org/10.1016/j.apsusc.2014.05.090
26. Zhang Y., Zou G., Liu L., Wu A., Sun Z., Zhou Y.N. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure // Materials Science and Engineering: A. 2016. V. 662. P. 178–184. https://doi.org/10.1016/j.msea.2016.03.068
27. Vorobyev A.Y., Guo C. Colorizing metals with femtosecond laser pulses // Applied Physics Letters. 2008. V. 92. № 4. P. 041914. https://doi.org/10.1063/1.2834902
28. Bonse J., Höhm S., Koter R., Hartelt M., Spaltmann D., Pentzien S., Rosenfeld A., Krüger J. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium // Applied Surface Science. 2016. V. 374. P. 190–196. https://doi.org/10.1016/j.apsusc.2015.11.019
29. Martínez-Calderon M., Manso-Silván M., Rodríguez A., Gómez-Aranzadi M., García-Ruiz J.P., Olaizola S.M., Martín-Palma R.J. Surface micro-and nano-texturing of stainless steel by femtosecond laser for the control of cell migration // Scientific reports. 2016. V. 6. №. 1. P. 1–10. https://doi.org/10.1038/srep36296
30. Ackerl N., Gugger P., Wegener K. Laser marking and coloration of Ti-6Al-4V with ultrashort pulses // Journal of Laser Applications. 2020. V. 32. № 3. P. 032013. https://doi.org/10.2351/7.0000021
31. Li G., Li J., Hu Y., Zhang C., Li X., Chu J., Huang W. Femtosecond laser color marking stainless steel surface with different wavelengths // Applied Physics A. 2015. V. 118. № 4. P. 1189–1196. https://doi.org/10.1007/s00339-014-8868-3
32. Lee K., Ki H. Femtosecond laser patterning based on the control of surface reflectance // Applied Surface Science. 2019. V. 494. P. 187–195. https://doi.org/10.1016/j.apsusc.2019.07.163
33. Jwad T., Penchev P., Nasrollahi V., Dimov S. Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms // Applied Surface Science. 2018. V. 453. P. 449–456. https://doi.org/10.1016/j.apsusc.2018.04.277
34. Gräf S. Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications // Advanced Optical Technologies. 2020. V. 9. № 1–2. P. 11–39. https://doi.org/10.1515/aot-2019-0062
35. Liu W., Jiang L., Han W., Hu J., Li X., Huang J.,Zhan S., Lu Y. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains // Optics Express. 2019. V. 27. № 7. P. 9782–9793. https://doi.org/10.1364/OE.27.009782
36. Kotsiuba Y., Hevko I., Bellucci S., Gnilitskyi I. Bitmap and vectorial hologram recording by using femtosecond laser pulses // Scientific Reports. 2021. V. 11. № 1. P. 1–8. https://doi.org/10.1038/s41598-021-95665-5
37. Hermens U., Pothen M., Winands K., Arntz K., Klocke F. Automated polarization control for the precise alignment of laser-induced self-organized nanostructures // Optics and Lasers in Engineering. 2018. V. 101. P. 44–50. https://doi.org/10.1016/j.optlaseng.2017.10.001
38. Одиноков С. Методы и оптико-электронные приборы для автоматического контроля подлинности защитных голограмм. М.: Техносфера, 2013. 176 с.
39. Gnilitskyi I., Derrien T.J.Y., Levy Y., Bulgakova N.M., Mocek T., Orazi L. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity // Scientific reports. 2017. V. 7. № 1. P. 1–11. https://doi.org/10.1038/s41598-017-08788-z
40. Andreeva Y.M., Luong V.C., Lutoshina D.S., Medvedev O.S., Mikhailovskii V.Y., Moskvin M.K., Odintsova G.V., Romanov V.V., Shchedrina N.N., Veiko V.P. Laser coloration of metals in visual art and design // Optical Materials Express. 2019. V. 9. № 3. P. 1310–1319. https://doi.org/10.1364/OME.9.001310
41. Öktem B., Pavlov I., Ilday S., Kalaycıoğlu H., Rybak A., Yavaş S., Erdoğan M., Ilday F.Ö. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses // Nat Photon. 2013. V. 7. № 11. P. 897–901. https://doi.org/10.1038/nphoton.2013.272
42. Rudenko A., Abou-Saleh A., Pigeon F., Mauclair C., Garrelie F., Stoian R., Colombier J.P. High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces // Acta Materialia. 2020. V. 194. P. 93–105. https://doi.org/10.1016/j.actamat.2020.04.058
43. Tsibidis G.D., Skoulas E., Papadopoulos A., Stratakis E. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectric suponir radiation with femtosecond pulsed lasers // Physical Review B. 2016. V. 94. № 8. P. 081305. https://doi.org/10.1103/PhysRevB.94.081305
44. Gurevich E.L. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation // Applied Surface Science. 2016. V. 374. P. 56–60. https://doi.org/10.1016/j.apsusc.2015.09.091
45. Prodger P., Gunning T. Time stands still: Muybridge and the instantaneous photography movement. Oxford.: Oxford University Press, 2003. 328 p.
46. Fauchet P.M., Siegman A.E. Surface ripples on silicon and gallium arsenide under picosecond laser illumination // Applied Physics Letters. 1982. V. 40. № 9. P. 824–826. https://doi.org/10.1063/1.93274
47. Zhang C.Y., Yao J.W., Liu H.Y., Dai Q.F., Wu L.J., Lan S., Trofimov V.A., Lysak T.M. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses // Optics letters. 2012. V. 37. № 6. P. 1106–1108. https://doi.org/10.1364/OL.37.001106
References
1. Denisyuk Yu.N. My way in holography / Yu.N. Denisyuk — the founder of Russian holography // Proceedings of the All-Russian Seminar. St. Petersburg: St. Petersburg State University ITMO, 2007. P. 7–14.
2. Gabor D. Holography, 1948–1971 // Science. 1972. V. 177. № 4046. P. 299–313. https://doi.org/10.1126/science.177.4046.299
3. Leith E.N., Upatnieks J. Reconstructed wavefronts and communication theory // JOSA. 1962. V. 52. № 10. P. 1123–1130. https://doi.org/10.1364/JOSA.52.001123
4. Benton S.A., Bove Jr.V.M. Holographic imaging. Hoboken.: John Wiley & Sons, 2008. P. 173 https://doi.org/10.1002/9780470224137
5. Lu Y.T., Chi S. Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications // Optik. 2003. V. 114. № 4. P. 161–167. https://doi.org/10.1078/0030-4026-00241
6. Bulanovs A., Gerbreders V., Paschkevich V., Teteris J. Dot-matrix holographic recording in amorphous chalcogenide films // Advanced Optical Materials, Technologies, and Devices. SPIE. 2007. V. 6596. P. 128–131. https://doi.org/10.1117/12.726405
7. Firsov A., Firsov A., Loechel B., Erko A., Svintsov A., Zaitsev S. Fabrication of digital rainbow holograms and 3D imaging using SEM based e-beam lithography // Optics Express. 2014. V. 22. № 23. P. 28756–28770. https://doi.org/10.1364/OE.22.028756
8. Zhu X., Yan W., Levy U., Mortensen N.A., Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces // Science advances. 2017. V. 3. № 5. P. e1602487. https://doi.org/10.1126/sciadv.160248
9. Wlodarczyk K.L., Ardron M., Waddie, A.J., Dunn A., Kidd M.D., Weston N.J., Hand D.P. Laser microsculpting for the generation of robust diffractive security markings on the surface of metals // Journal of Materials Processing Technology. 2015. V. 222. P. 206–218. https://doi.org/10.1016/j.jmatprotec.2015.03.001
10. Tamulevičius T., Juodėnas M., Klinavičius T., Paulauskas A., Jankauskas K., Ostreika A., Žutautas A., Tamulevičiu, S. Dot-matrix hologram rendering algorithm and its validation through direct laser interference patterning // Scientific reports. 2018. V. 8. № 1. P. 1–11. https://doi.org/10.1038/s41598-018-32294-5
11. Lasagni A.F., Gachot C., Trinh K.E., Hans M., Rosenkranz A., Roch T., Mücklich F. Direct laser interference patterning, 20 years of development: From the basics to industrial applications // Laser-based micro-and nanoprocessing XI. SPIE. 2017. V. 10092. № 3. P. 186–196. https://doi.org/10.1117/12.2252595
12. Voisiat B., Wang W., Holzhey M., Lasagni A.F. Improving the homogeneity of diffraction based colours by fabricating periodic patterns with gradient spatial period using Direct Laser Interference Patterning // Scientific reports. 2019. V. 9. № 1. P. 1–9. https://doi.org/10.1038/s41598-019-44212-4
13. Birnbaum M. Semiconductor surface damage produced by ruby lasers // Journal of Applied Physics. 1965. V. 36. № 11. P. 3688–3689. https://doi.org/10.1063/1.1703071
14. Akhmanov S.A., Emel'yanov V.I., Koroteev N.I., Seminogov V.N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics // Soviet Physics Uspekhi. 1985. V. 28. № 12. P. 1084. https://doi.org/10.1070/PU1985v028n12ABEH003986
15. Rudenko A., Mauclair C., Garrelie F., Stoian R., Colombier, J.P. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations // Physical Review B. 2019. V. 99. № 23. P. 235412. https://doi.org/10.1103/PhysRevB.99.235412
16. Reif J., Varlamova O., Varlamov S., Bestehorn M. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation // AIP Conference Proceedings. American Institute of Physics. 2012. V. 1464. № 1. P. 428–441. https://doi.org/10.1063/1.4739897
17. Bonse J., Gräf S. Maxwell meets Marangoni — a review of theories on laser-induced periodic surface structures // Laser & Photonics Reviews. 2020. V. 14. № 10. P. 2000215. https://doi.org/10.1002/lpor.202000215
18. Dusser B., Sagan Z., Soder H., Faure N., Colombier J.P., Jourlin M., Audouard E. Controlled nanostructrures formation by ultrafast laser pulses for color marking // Optics express. 2010. V. 18. № 3. P. 2913–2924. https://doi.org/10.1007/s00339-012-6849-y
19. Ionin A.A., Kudryashov S.I., Makarov S.V., Seleznev L.V., Sinitsyn D.V., Golosov E.V., Golosova O.A., Kolobov Y.R., Ligachev A.E. Femtosecond laser color marking of metal and semiconductor surfaces // Applied Physics A. 2012. V. 107. № 2. P. 301–305. https://doi.org/10.1007/s00339-012-6849-y
20. Tan B., Venkatakrishnan K. A femtosecond laser-induced periodical surface structure on crystalline silicon // Journal of Micromechanics and Microengineering. 2006. V. 16. № 5. P. 1080. https://doi.org/10.1088/0960-1317/16/5/029
21. Vorobyev A.Y., Guo C. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals // Applied Physics A. 2007. V. 86. № 3. P. 321–324. https://doi.org/10.1007/s00339-006-3800-0
22. Bonse J., Krüger J., Höhm S., Rosenfeld A. Femtosecond laser-induced periodic surface structures // Journal of Laser Applications. 2012. V. 24. № 4. P. 042006. https://doi.org/10.2351/1.4712658
23. Gräf S., Kunz C., Müller F.A. Formation and properties of laser-induced periodic surface structures on different glasses // Materials. 2017. V. 10. № 8. P. 933. https://doi.org/10.3390/ma10080933
24. Rebollar E., Castillejo M., Ezquerra T.A. Laser induced periodic surface structures on polymer films: From fundamentals to applications // European Polymer Journal. 2015. V. 73. P. 162–174. https://doi.org/10.1016/j.eurpolymj.2015.10.012
25. Long J., Fan P., Zhong M., Zhang H., Xie Y., Lin C. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures // Applied Surface Science. 2014. V. 311. P. 461–467. https://doi.org/10.1016/j.apsusc.2014.05.090
26. Zhang Y., Zou G., Liu L., Wu A., Sun Z., Zhou Y.N. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure // Materials Science and Engineering: A. 2016. V. 662. P. 178–184. https://doi.org/10.1016/j.msea.2016.03.068
27. Vorobyev A.Y., Guo C. Colorizing metals with femtosecond laser pulses // Applied Physics Letters. 2008. V. 92. № 4. P. 041914. https://doi.org/10.1063/1.2834902
28. Bonse J., Höhm S., Koter R., Hartelt M., Spaltmann D., Pentzien S., Rosenfeld A., Krüger J. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium // Applied Surface Science. 2016. V. 374. P. 190–196. https://doi.org/10.1016/j.apsusc.2015.11.019
29. Martínez-Calderon M., Manso-Silván M., Rodríguez A., Gómez-Aranzadi M., García-Ruiz J.P., Olaizola S.M., Martín-Palma R.J. Surface micro-and nano-texturing of stainless steel by femtosecond laser for the control of cell migration // Scientific reports. 2016. V. 6. №. 1. P. 1–10. https://doi.org/10.1038/srep36296
30. Ackerl N., Gugger P., Wegener K. Laser marking and coloration of Ti-6Al-4V with ultrashort pulses // Journal of Laser Applications. 2020. V. 32. № 3. P. 032013. https://doi.org/10.2351/7.0000021
31. Li G., Li J., Hu Y., Zhang C., Li X., Chu J., Huang W. Femtosecond laser color marking stainless steel surface with different wavelengths // Applied Physics A. 2015. V. 118. № 4. P. 1189–1196. https://doi.org/10.1007/s00339-014-8868-3
32. Lee K., Ki H. Femtosecond laser patterning based on the control of surface reflectance // Applied Surface Science. 2019. V. 494. P. 187–195. https://doi.org/10.1016/j.apsusc.2019.07.163
33. Jwad T., Penchev P., Nasrollahi V., Dimov S. Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms // Applied Surface Science. 2018. V. 453. P. 449–456. https://doi.org/10.1016/j.apsusc.2018.04.277
34. Gräf S. Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications // Advanced Optical Technologies. 2020. V. 9. № 1–2. P. 11–39. https://doi.org/10.1515/aot-2019-0062
35. Liu W., Jiang L., Han W., Hu J., Li X., Huang J., Zhan S., Lu Y. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains // Optics Express. 2019. V. 27. № 7. P. 9782–9793. https://doi.org/10.1364/OE.27.009782
36. Kotsiuba Y., Hevko I., Bellucci S., Gnilitskyi I. Bitmap and vectorial hologram recording by using femtosecond laser pulses // Scientific Reports. 2021. V. 11. № 1. P. 1–8. https://doi.org/10.1038/s41598-021-95665-5
37. Hermens U., Pothen M., Winands K., Arntz K., Klocke F. Automated polarization control for the precise alignment of laser-induced self-organized nanostructures // Optics and Lasers in Engineering. 2018. V. 101. P. 44–50. https://doi.org/10.1016/j.optlaseng.2017.10.001
38. Odinokov S. Methods and optoelectronic devices for automatic verification of the authenticity of protective holograms. Moscow: Technosphere, 2013. 176 p.
39. Gnilitskyi I., Derrien T.J.Y., Levy Y., Bulgakova N.M., Mocek T., Orazi L. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity // Scientific reports. 2017. V. 7. № 1. P. 1–11. https://doi.org/10.1038/s41598-017-08788-z
40. Andreeva Y.M., Luong V.C., Lutoshina D.S., Medvedev O.S., Mikhailovskii V.Y., Moskvin M.K., Odintsova G.V., Romanov V.V., Shchedrina N.N., Veiko V.P. Laser coloration of metals in visual art and design // Optical Materials Express. 2019. V. 9. № 3. P. 1310–1319. https://doi.org/10.1364/OME.9.001310
41. Öktem B., Pavlov I., Ilday S., Kalaycıoğlu H., Rybak A., Yavaş S., Erdoğan M., Ilday F.Ö. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses // Nat Photon. 2013. V. 7. № 11. P. 897–901. https://doi.org/10.1038/nphoton.2013.272
42. Rudenko A., Abou-Saleh A., Pigeon F., Mauclair C., Garrelie F., Stoian R., Colombier J.P. High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces // Acta Materialia. 2020. V. 194. P. 93–105. https://doi.org/10.1016/j.actamat.2020.04.058
43. Tsibidis G.D., Skoulas E., Papadopoulos A., Stratakis E. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectric suponir radiation with femtosecond pulsed lasers // Physical Review B. 2016. V. 94. № 8. P. 081305. https://doi.org/10.1103/PhysRevB.94.081305
44. Gurevich E.L. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation // Applied Surface Science. 2016. V. 374. P. 56–60. https://doi.org/10.1016/j.apsusc.2015.09.091
45. Prodger P., Gunning T. Time stands still: Muybridge and the instantaneous photography movement. Oxford.: Oxford University Press, 2003. P. 328.
46. Fauchet P.M., Siegman A.E. Surface ripples on silicon and gallium arsenide under picosecond laser illumination // Applied Physics Letters. 1982. V. 40. № 9. P. 824–826. https://doi.org/10.1063/1.93274
47. Zhang C.Y., Yao J.W., Liu H.Y., Dai Q.F., Wu L.J., Lan S., Trofimov V.A., Lysak T.M. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses // Optics letters. 2012. V. 37. № 6. P. 1106–1108. https://doi.org/10.1364/OL.37.001106