Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Real-time measurement of retardation and fast axis azimuth for wave plates

 

© 2015    Chengke Xie*,**; Linglin Zhu*; Qiao Yuan*; Fanyue Li***; Aijun Zeng*,**; Huijie Huang*,**

*     Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China

**   University of Chinese Academy of Sciences, Beijing, China

*** Nanjing Institute of Advanced Laser Technology, Nanjing, China

Е-mail: aijunzeng@siom.ac.cn

Real-time measurement of retardation and fast axis azimuth of wave plate is proposed. The light emitted from the laser passes through a circular polarizer and the sample successively. Then the beam is diffracted to three sub-beams by a grating. One sub-beam passes through a standard quarter-wave plate and then is split and analyzed by a Wollaston prism. The other two sub-beams are all directly split and analyzed by Wollaston prisms. Six intensities are simultaneously detected to calculate the retardation and the fast axis azimuth. Experiments show that for the quarter-wave plate the average and standard deviation of the retardation are 89.78° and 0.14° respectively, and the maximum deviation of the fast axis azimuth is 0.6°; for the eighth-wave plate, the average and standard deviation of the retardation are 45.15° and 0.15° respectively, and the maximum deviation of the fast axis azimuth is 0.53.

Keywords: real-time measurements, retardation, circular pulverizer, Wollaston prism, standard deviation.

OCIS codes: 120.1880; 310.5448; 230.1950; 230.5480

UDC 681.78

Submitted 29.09.2014.

References

1.         Wilson S.M., Vats V., Vaccaro P.H. Time-domain method for characterizing retardation plates with high sensitivity and resolution // J. Opt. Soc. Am. B. 2007. V. 24. P. 2500–2508.

2.         Zhang Y., Zhang S., Han Y., Li Y., Xu X. Method for the measurement of retardation of waveplates based on laser frequency-splitting technology // Opt. Eng. 2001. V. 40. P. 1071–1075.

3.         Zong X., Liu W., Zhang S. Measurement of retardations of arbitrary waveplates by laser frequency splitting // Opt. Eng. 2006. V. 45. P. 033602-1–5.

4.        Liu W., Liu M., Zhang S. Method for the measurement of phase retardation of any wave plate with high precision // Appl. Opt. 2008. V. 47. P. 5562–5569.

5.         Montarou C.C., Gaylord T.K. Two-wave-plate compensator method for single-point retardation measurements // Appl. Opt. 2004. 43. P. 6580–6595.

6.        Kurzynowski P., Wo Źniak W.A. Phase retardation measurement in simple and reverse Senarmont compensators without calibrated quarter wave plates // Optik. 2002. V. 113. P. 51–53.

7.         Lin P.L., Han C.Y., Chao Y.F. Three-intensity measurement technique and its measurement in elliptical retarder // Opt. Commun. 2008. V. 281. P. 3403–3406.

8.        Lo Y., Hsu P. Birefringence measurements by an electro-optic modulator using a new heterodyne scheme // Opt. Eng. 2002. V. 41. P. 2764–2767.

9.        Lo Y., Lai C., Lin J., Hsu P. Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer // Appl. Opt. 2004. V. 43. P. 2013–2022.

10.       Lee S., Lin J., Lo Y. A compact circular heterodyne interferometer for simultaneous measurements of variation in the magnitude of phase retardation and principal axis angle // Meas. Sci. Technol. 2004. V. 15. P. 978–982.

11.       Wang B., Hellman W. Accuracy assessment of a linear birefringence measurement system using a Soleil–Babinet compensator // Rev. Sci. Instrum. 2001. V. 72. P. 4066–4070.

12.       Wang B. Linear birefringence measurement instrument using two photoelastic modulators // Opt. Eng. 2002. V. 41. P. 981–987.

13.       Zeng A., Li F., Zhu L., Huang H. Simultaneous measurement of retardance and fast axis angle of a quarter-wave plate using one photoelastic modulator // Appl. Opt. 2011. V. 50. P. 4347–4352.

14.       Fang R., Zeng A., Zhu L., Liu L., Huang H. Simultaneous measurement of retardation and fast axis angle of eighth-wave plate in real time // Opt. Commun. 2012. V. 285. P. 4884–4886.

15.       Liu L., Zeng A., Chen B., Li F., Zhu L., Huang H. Simultaneous measurement of small birefringence magnitude and direction in real time // Opt. Laser Eng. 2014. V. 53. P. 19–24.

16.       Zhu L., Zeng A., Li F., Huang H. Real-time measurement method for retardation of eighth waveplate independent of fast axis // Chin. J. Laser (in Chinese). 2011. V. 38(5). P. 0508002-1–4.

 

 

Полный текст >>>