DOI: 10.17586/1023-5086-2023-90-06-70-79
Zhang Jian1*, Liang Lei2, Mawien Kon3, Feng Kun4
1, 2, 4National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan, Hubei, China
3Engineering Department,Juba University, Juba city, Juba, South Sudan
1zhangjian0716@126.com https://orcid.org/0000-0001-5500-2685
2lianglie027027@126.com https://orcid.org/0000-0001-6420-9944
3mawien_kon_juba@126.com https://orcid.org/0000-0002-0041-4815
4fengkun430070@126.com https://orcid.org/0000-0002-9590-9932
Abstract
Subject of study. Aiming at the problem that the conventional pipeline leakage detection methods cannot meet the needs of oil and gas pipeline leakage detection at the present stage, combined with the application analysis of optical fiber pressure sensing in oil and gas pipeline detection. Method. A fiber Bragg grating pressure sensing system integrating diaphragm and L-shaped cantilever beam as sensitive structure is designed for pressure change monitoring of oil and gas pipeline in this paper. Firstly, the sensitivity, temperature self-compensation effect and static and dynamic characteristics of the sensor are analyzed theoretically. Combined with the negative pressure wave model, the pipeline leakage detection experimental system is constructed. Secondly, the data is denoised by the wavelet analysis method, and then the inflection point of the negative pressure wave is judged. Finally, the leakage point is located according to the data processing results. Main results. The experimental results show that the error between the theoretical pressure sensitivity of fiber Bragg grating pressure sensor and the pressure sensitivity of static finite element analysis is 4.7%, and the first-order modal natural frequency is 3290.9 Hz. In the range of 0–2 MPa, the pressure sensitivity of the sensor is 1185.621 pm/MPa. The average leakage location error of the model is 8.5%. Practical significance. Practice has proved that the fiber Bragg grating pressure sensing technology has many advantages, such as high sensitivity, high reliability and easy networking. The system can be effectively applied to the field of oil and gas pipeline leakage detection engineering.
Keywords: leak detection, gathering pipeline, fiber Bragg grating pressure sensing
Acknowledgment: Optical fiber sensing submarine cable system for safety monitoring of deep-sea riser (SKJC-2020-01-016); the key technology and application of marine deep space development and utilization (SKJC-KJ-2019KY02).
For citation: Zhang Jian, Liang Lei, Mawien Kon, Feng Kun. Leak detection of gathering pipeline based on sensitive designed fiber Bragg grating pressure sensing system (Обнаружение утечек в секционном трубопроводе с помощью системы датчиков давления на основе оптоволоконных брэгговских решёток) [in English] // Opticheskii Zhurnal. 2023. V. 90. № 6. P. 70–79. http://doi.org/10.17586/1023-5086-2023-90-06-70-79
OCIS сode: 060.2370
Обнаружение утечек в секционном трубопроводе с помощью системы датчиков давления на основе оптоволоконных брэгговских решёток
Zhang Jian1*, Liang Lei2, Mawien Kon3, Feng Kun4
1, 2, 4National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan, Hubei, China
3Engineering Department,Juba University, Juba city, Juba, South Sudan
1zhangjian0716@126.com https://orcid.org/0000-0001-5500-2685
2lianglie027027@126.com https://orcid.org/0000-0001-6420-9944
3mawien_kon_juba@126.com https://orcid.org/0000-0002-0041-4815
4fengkun430070@126.com https://orcid.org/0000-0002-9590-9932
Аннотация
Предмет исследования. Способ повышения эффективности обнаружения утечек в нефте- и газопроводах посредством использования оптоволоконных брэгговских датчиков измерения давления. Метод. Теоретический анализ чувствительности, эффекта температурной самокомпенсации, а также статических и динамических характеристик предложенной системы измерения давления в нефте- и газопроводах на основе оптоволоконного брэгговского датчика измерения давления, интегрированного в мембрану, размещённую на конце Г-образного кронштейна в рабочем объёме трубы. Использование методики определения места утечки как точки перегиба моделируемой волны отрицательного давления. Верификация теоретических положений экспериментальными исследованиями макета предлагаемой системы с использованием инструментария вейвлет-анализа для увеличения отношения сигнал/шум при обработке результатов эксперимента. Основные результаты. Подтверждена достоверность результатов теоретического анализа и моделирования: разность между экспериментальными данными и результатами моделирования не превышает 4,7% при частоте первой гармоники порядка 3290,9 Гц. Чувствительность датчика давления составляет 1185,621 пм/МПа в диапазоне 0–2 МПа при относительной величине средней погрешности определения места утечки 8,5%. Практическая значимость. Доказана возможность реализации системы определения места утечки в нефте- и газопроводах на основе оптоволоконных брэгговских датчиков измерения давления, обладающей достаточной для практических применений чувствительностью, надёжностью и оперативностью развёртывания в сетевой конфигурации.
Ключевые слова: обнаружение утечки, секционный трубопровод, оптоволоконные сенсоры давления на брэгговских решётках
Благодарность: волоконно-оптическая подводная кабельная система для контроля безопасности глубоководного подъёмника (SKJC-2020-01-016 ); ключевая технология и применение для освоения и использования морских глубоководных пространств (SKJC-KJ-2019KY02).
Ссылка для цитирования: Zhang Jian, Liang Lei, Mawien Kon, Feng Kun. Leak detection of gathering pipeline based on sensitive designed fiber Bragg grating pressure sensing system (Обнаружение утечек в секционном трубопроводе с помощью системы датчиков давления на основе оптоволоконных брэгговских решёток) [на англ. языке] // Оптический журнал. 2023. Т. 90. № 6. С. 70–79. http://doi.org/10.17586/1023-5086-2023-90-06-70-79
Код OCIS: 060.2370.
References
1. Gao P., Tan Z., Liu G. China's oil and gas pipeline construction in 2016 // International Petroleum&Economics J. 2016. V. 5. № 10. P. 1248–1254. http://doi.org/10.3969/j.issn.1004-7298.2017.03.004
2. Yang L., Bai H.T., Guo Q. Analysis of causes of oil and gas pipeline accidents and research on classification methods // Oil&Gas storage and transportation J. 2018. V. 12. № 7. P. 109–114. http://doi.org/10.1080/10803548.2021.1916238
3. Yu S.R., Ma X., Liu Z. Safety evaluation of reliability of on Duty long pipeline indifferent operation period // Journal of Lan Zhou University of Technology. 2005. V. 10. № 4. P. 71–75. http://doi.org/CNKI:SUN:GSGY.0.2005-04-017
4. Song Y. Research progress in the leakage-detection technology // Contemporary Chemical Industry J. 2015. V. 5. № 3. P. 297–301. http://doi.org/10.3969/j.issn.1671-0460.2014.12.052
5. Geng Y.F., Zhang C.H. Leak detection technology for the long Gas pipeline // Journal of scientific instrument. 2021. V. 22. № 6. P. 328–330. http://doi.org/10.3321/j.issn:0254-3087. 2001. z1.153
6. He X.C. Analysis of leakage causes and detection methods of oil and gas long-distance pipelines // Chemical Management J. 2011. V. 10. № 9. P. 162–163. http://doi.org/10.3969/j.issn.1008-4800.2017.10.110
7. Bariha N., Mishra I.M., Srivastava V.C. Hazard analysis of failure of natural gas and petroleum gas pipelines // Journal of Loss Prevention in the Process Industries. 2014. V. 22. № 9. P. 217–226. http://doi.org/10.1016/j.jlp.2015.12.025
8. Ch Y.G., Bai Q., Wang D. Distributed optical fiber system for pipeline strain Hazard inspection using BOTDR // Chinese Journal of Sensors and Actuators. 2019. V. 31. № 11. P. 159–164. http://doi.org/10.3969/j.issn.1004-1699.2018.011.027
9. Zhang X., Pan H., Bai H., Yan M., Wang J., Deng C., Wang T. Transition of Fabry–Perot and antiresonant mechanisms via a SMF-capillary-SMF structure // Opt. Lett. J. 2018. V. 43. № 10. P. 2268–2271. http://doi.org/10.1364/OL.43.002268
10. Chen P.C., Cai Y.J., Li J. Study on modified Mach–Zehnder interferometer based pipeline security and pre-warning system // Chinese Journal of Sensors and Actuators. 2017. V. 11. № 11. P. 1661–1664. http://doi.org/CNKI:SUN:CGJS.0.2009-11-028
11. Li Z., Zhang Y., Zhang W., Kong L., Yan T., Geng P., Wang B. High-sensitivity gas pressure Fabry–Perot fiber probe with micro-channel based on Vernier Effect // J. Lightwave Technol. 2019. V. 37. № 14. P. 3444–3451. http://doi.org/10.1109/JLT.2019.2917062
12. Yoshimura R., Utsuno H. The propagation characteristic of the sound wave in a viscoelasticity sound tube // Transactions of the Japan Society of Mechanical Engineers. 2022. V. 79. № 804. P. 2723–2730. http://doi.org/10.1299/kikaic.79.2723
13. Chen S.L., Li J., Huang X J., Zheng Z M., Jin S J. Review of leakage monitoring and quasi real-time detection technologies for long gas & oil pipelines // Chinese Journal of Scientific Instrument. 2016. V. 19. № 22. P. 1747–1760. http://doi.org/10.3969/j.issn.0254-3087.2016.08.006
14. Feng L.I., Wen H.W., Jun Y.I. Leakage detection of natural gas pipeline coupling negative pressure wave and acoustic wave // Industrial Safety and Environmental Protection. 2012. V. 25. № 24. P. 169–177. http://doi.org/10.3969/j.issn.1001-425X.2019.02.008
15. Wang J., Zhao L., Liu T. Novel negative pressure wave-based pipeline leak detection system using fiber Bragg grating-based pressure sensors // Journal of lightwave technology. 2011. V. 18. № 34. P. 487–499. http://doi.org/10.1109/JLT.2016.2615468
16. Ahmad H., Harun S.W., Chong W.Y. High‐sensitivity pressure sensor using a polymer‐embedded FBG // Microwave and Optical Technology Letters. 2013. V. 50. № 1. P. 60–61. http://doi.org/10.1002/mop.23021
17. Pachava V.R., Kamineni S., Madhuvarasu S.S. A high sensitive FBG pressure sensor using thin metal diaphragm // Journal of Optics. 2018.V. 43. № 2. P. 117–121. http://doi.org/10.1007/s12596-014-0186-9
18. Huang J., Zhou Z., Wen X. A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation // Measurement. 2013. V. 46. № 3. P. 1041–1046. http://doi.org/10.1016/j.measurement.2012.10.010
19. Liang M., Fang X., Wu G. A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure // Optik – International Journal for Light and Electron Optics. 2009. V. 145. № 20. P. 503–512. http://doi.org/10.1016/j.ijleo.2017.08.014
20. Wang H.L., Song J., Feng D.Q., Wu H.C. High temperature-pressure FBG sensor applied to special environments // Optics and Precision Engineering. 2018. V. 19. № 3. P. 545–551. http://doi.org/10.3788/OPE.20111903.0545
21. Liu M.Y., Lu Y.F., Zhang Z.J., Wang J., Shi D.H. FBG pressure sensor based on polymer packaging // Chinese Journal of Scientific Instrument. 2004. V. 37. № 10. P. 2392–2398. http://doi.org/10.3969/j.issn.0254-3087.2016.10.028
22. Gu Y.F., Zhao Y., Lv R.Q. A practical FBG sensor based on a thin-walled cylinder for hydraulic pressure measurement // IEEE Photonics Technology Letters. 2013. V. 28. № 22. P. 2569–2572. http://doi.org/10.1109/LPT.2016.2605696
23. Huang J., Zhou Z., Zhang D. A fiber Bragg grating pressure sensor and its application to pipeline leakage detection // Advances in Mechanical Engineering. 2016. V. 5. № 2. P. 451–460. http://doi.org/10.1155/2013/590451
24. Pachava V.R., Kamineni S., Madhuvarasu S.S. FBG based high sensitive pressure sensor and its low-cost interrogation system with enhanced resolution // Photonic Sensors. 2017. V. 5. № 4. P. 321–329. http://doi.org/10.1007/s13320-015-0259-7