DOI: 10.17586/1023-5086-2023-90-06-92-99
Zhichao Xiong1, Bo Wang2*, Lichang Li3, Yongchun Zhou4, Guoyu Liang5, Jiaman Hong6
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China
12112115109@mail2.gdut.edu.cn https://orcid.org/0000-0002-5084-475X
2wangb_wsx@yeah.net https://orcid.org/0000-0002-0927-699X
3llchang616@163.com https://orcid.org/0000-0002-7066-9872
4yc_z210230@126.com https://orcid.org/0000-0002-8663-2003
5liangguoyu2022@163.com https://orcid.org/0000-0002-6131-8851
6hongjm2021@163.com https://orcid.org/0000-0003-3309-0316
Abstract
Subject of study. A multilayer semicircle reflective polarization-selective beam splitter is proposed by semicircle grating scheme in this paper. Purpose of the work. With the characteristics of polarization selectivity, the beam splitter grating can separate the incident light into three orders (0th order and ±1st orders) for transverse electric polarization and two orders (–1st order and 1st order) for transverse magnetic polarization, respectively. In this work, the proposed splitter achieves the beam polarization selectivity under normal incidence. Method. The finite element method is a commonly used analysis method to research micro-nano-optical devices, which can use the mathematical approximation to simulate the real physical system. It is used to calculate the optimal parameters of the proposed polarization-selective beam splitter in this research. Main results. By a series of accurate calculations, it is found that the total diffraction efficiencies of transverse electric polarized light can reach 97.27% and transverse magnetic polarization polarized light can reach 96.88% under the optimal grating parameters. It can be found that the grating possesses high efficiency and high reflection optical properties. When the grating parameters such as the grating period and grating thickness fluctuate within a certain range, the impact of the effect of splitting is not big, which means the tolerance is good. Practical significance. The polarization-selective splitter by dual-structure scheme has the certain application value for optical fiber communication and laser system.
Keywords: polarization-selective, multichannel beam splitter, semicircle grating, finite element method, grating
Acknowledgment: this work is supported by the Science and Technology Program of Guangzhou (202002030284, 202007010001).
For citation: Zhichao Xiong, Bo Wang, Lichang Li, Yongchun Zhou, Guoyu Liang, Jiaman Hong. Multichannel polarization-selective splitter by semicircle grating scheme (Многоканальный поляризационно-селективный светоделитель по схеме полукруглой решётки) [in English] // Opticheskii Zhurnal. 2023. V. 90. № 6. P. 92–99. http://doi.org/10.17586/1023-5086-2023-90-06-92-99
OCIS сodes: 230.1360, 230.5440, 050.1950
Многоканальный поляризационно-селективный светоделитель по схеме полукруглой решётки
Zhichao Xiong1, Bo Wang2*, Lichang Li3, Yongchun Zhou4, Guoyu Liang5, Jiaman Hong6
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China
12112115109@mail2.gdut.edu.cn https://orcid.org/0000-0002-5084-475X
2wangb_wsx@yeah.net https://orcid.org/0000-0002-0927-699X
3llchang616@163.com https://orcid.org/0000-0002-7066-9872
4yc_z210230@126.com https://orcid.org/0000-0002-8663-2003
5liangguoyu2022@163.com https://orcid.org/0000-0002-6131-8851
6hongjm2021@163.com https://orcid.org/0000-0003-3309-0316
Аннотация
Предмет исследования. Исследование и разработка полукруглого отражающего многослойного поляризационно-селективного светоделителя на основе полукруглой решётки. Цель работы. Обеспечение эффективной селективности светоделителя по признаку поляризации пучка. Метод. Параметры поляризационно-селективного светоделителя оптимизированы по методу конечных элементов. Основные результаты. Эффективность селекции частей разделяемого пучка, отличающихся по видам поляризации, составляет не менее 97,27% для излучения с вектором электрического поля, перпендикулярным плоскости падения (s-поляризация), и 96,88% для излучения поперечной магнитной поляризации поляризованного света (p-поляризации) при малой чувствительности к технологическим отклонениям периода и толщины решётки светоделителя. Практическая значимость. Предложенный поляризационно-селективный светоделитель может использоваться для повышения энергетической эффективности волоконно-оптических линий связи и прикладных лазерных систем.
Ключевые слова: селекция по поляризации, многоканальный светоделитель, полукруглая решётка, метод конечных элементов, дифракционная решётка
Благодарность: эта работа проводится при поддержке Научно-технической программы Гуанчжоу (202002030284, 202007010001).
Ссылка для цитирования: Zhichao Xiong, Bo Wang, Lichang Li, Yongchun Zhou, Guoyu Liang, Jiaman Hong. Multichannel polarization-selective splitter by semicircle grating scheme (Многоканальный поляризационно-селективный светоделитель по схеме полукруглой решётки) [ на англ. языке] // Оптический журнал. 2023. Т. 90. № 6. С. 92–99. http://doi.org/10.17586/1023-5086-2023-90-06-92-99
Коды OCIS: 230.1360, 230.5440, 050.1950.
References
1. Li H., Wang K., Qian L. Tunable color filter with non-subwavelength grating at oblique incidence // Optik. 2020. V. 207. P. 164432. http://doi.org/10.1016/j.ijleo.2020.164432
2. He W., Zhao J., Dong M., Meng F., Zhu L. Wavelength-switchable erbium-doped fiber laser incorporating fiber Bragg grating array fabricated by infrared femtosecond laser inscription // Opt. Laser Technol. 2019. V. 127. P. 106026. http://doi.org/10.1016/j.optlastec.2019.106026
3. Li C., Zhang M., Bowers J., Dai D. Ultra-broadband polarization beam splitter with silicon subwavelength-grating waveguides // Opt. Lett. 2020. V. 45. № 8. P. 2259–2262. http://doi.org/10.1364/OL.389207
4. Wang B., Ren L., Kong X., Xu Y., Ren K., Yang W., Cheng S., Chen F., Song F. Study on fabrication, spectrum and torsion sensing characteristics of microtapered long-period fiber gratings // Optik. 2020. V. 207. P. 164445. http://doi.org/10.1016/j.ijleo.2020.164445
5. Lee H-S., Kwak J., Seong T.Y., Hwang G., Kim W., Kim I., Lee K. Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene // Sci. Rep. 2019. V. 9. P. 19951. http://doi.org/10.1038/s41598-019-56194-4
6. Wolbromsky L., Dudaie M., Shinar S., Shaked N. Multiplane imaging with extended field-of-view using a quadratically distorted grating // Opt. Commun. 2020. V. 463. P. 125399. http://doi.org/10.1016/j.optcom.2020.125399
7. Yoo H., Jang J.U., Jang J.Y. Analysis of imaging characteristics of parallax images in double diffraction grating imaging // Optik 2019. V. 207. P. 163826. http://doi.org/10.1016/j.ijleo.2019.163826
8. Sanjuan F., Gaborit G., Coutaz J.L. Sub-wavelength terahertz imaging through optical rectification // Sci. Rep. 2018. V. 8. P. 13492. https://doi.org/10.1038/s41598-018-31970-w
9. Zhang J., Yang J., Liang L., Wu W. Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating // Opt. Commun. 2017. V. 407. P. 46–50. http://doi.org/10.1016/j.optcom.2017.08.044
10. Li D., Wang X., Ling J., Yuan Y. Multiwave length achromatic microlens through phase compensation based on the subwavelength metallic nanostructures // Opt. Commun. 2019. V. 445. P. 90–95. http://doi.org/10.1016/j.optcom.2019.04.029
11. Fang B., Chen L., Jing X. Electromagnetic dipole resonant characteristics of all dielectric one dimensional grating in terahertz region // Optik. 2018. V. 171. P. 130–138. http://doi.org/10.1016/j.ijleo.2018.06.038
12. Sasaki T., Kushida H., Sakamoto M., Noda K., Okamoto H., Kawatsuki N., Ono H. Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability // Opt. Commun. 2018. V. 431. P. 63–67. http://doi.org/10.1016/j.optcom.2018.09.013
13. Chen Z., Li Y., Zhang Y., Hu C., Sun X. Preparation of miRNA137 biomimetic coated coronary stent by dual-injection four-beam laser interference // Optik. 2020. V. 207. P. 164315. http://doi.org/10.1016/j.ijleo.2020.164315
14. Wang H., Zhao F., Yan Z., Hong X., Song J., Zhou K., Zhang T., Zhang W., Wang Y. All-fiber polarization interference filter based uniform multiwave length erbium-doped fiber laser // Laser Phys. 2019. V. 29. № 5. P. 055105. http://doi.org/10.1088/1555-6611/ab0d0e
15. Yang N., Xiao J. A compact silicon-based polarization independent power splitter using a three-guide directional coupler with subwavelength gratings // Opt. Commun. 2019. V. 459. P. 125095. http://doi.org/10.1016/j.optcom.2019.125095
16. Wu H., Lu J., Huang L., Zeng X., Zhou P. All-fiber laser with agile mode-switching capability through intracavity conversion // IEEE Photon. J. 2019. V. 12. № 2. P. 1500709. http://doi.org/10.1109/JPHOT.2019.2911270
17. Liang X., Zhang X., Chen Y., Zhang Y. Experiment demonstration of DFB semiconductor laser array based on s-bent waveguide with sampled grating // Optik. 2019. V. 202. P. 163557. http://doi.org/10.1016/j.ijleo.2019.163557
18. Hu J., Xing Z., Zou M., Liu B., Guo X., Fang F., Sun Y., Sun Q., Yan Z., Zhou K., Liu D., Zhang L. In-fiber dispersion compensated polarizer and mode-locked fiber laser application // IEEE Photon. Technol. Lett. 2020. V. 32. № 9. P. 510–513. http://doi.org/10.1109/LPT.2020.2981170
19. Yang W., Yu X., Zhang J., Deng X. Plasmonic transmitted optical differentiator based on the subwavelength gold gratings // Opt. Lett. 2020. V. 45. № 8. P. 2295–2298. http://doi.org/10.1364/OL.390566
20. Liu X., Wang C., Xu Y., Leng Y., Li R. A broadband low-chromatic-aberration single grating Offner stretcher by 3D analysis // Opt. Commun. 2020. V. 465. P. 125502. http://doi.org/10.1016/j.optcom.2020.125502
21. Zeng L., Chen M., Chen W., Yan W., Li Z., Yang F. Si-grating-assisted SPR sensor with high figure of merit based on Fabry–Perot cavity // Opt. Commun. 2019. V. 457. P. 124641. http://doi.org/10.1016/j.optcom.2019.124641
22. Gong B., Wen H., Li H. Polarization-independent two-layer grating with five-port splitting output under normal incidence // IEEE Photon. J. 2020. V. 12. № 2. P. 6500208. http://doi.org/10.1109/JPHOT.2020.2978882
23. Gaylord T.K., Moharam M.G., Pommet D.A., Grann E.B. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach // J. Opt. Soc. Am. A. 1995. V. 12. № 5. P. 1077–1086. http://doi.org/10.1364/JOSAA.12.001077
24. Xu Y., Wang F., Gao Y., Chen W., Chen C., Wang X., Yi Y., Sun X., Zhang D. Efficient polymer waveguide grating coupler with directionality enhancement // Opt. Commun. 2020. V. 463. P. 125418. http://doi.org/10.1016/j.optcom.2020.125418
25. Zhang R., Peng P., Li X., Liu S., Zhou Q., He J., Chen Y., Shen S., Yao S., Chang G. 4x100-Gb/s PAM-4 FSO transmission based on polarization modulation and direct detection // IEEE Photon. Technol. Lett. 2019. V. 31. № 10. P. 755–758. http://doi.org/10.1109/LPT.2019.2906753
26. Lou J., Cheng T., Li S. Ultra-short polarization beam splitter with square lattice and gold film based on dual-core photonic crystal fiber // Optik 2018. V. 179. P. 128–134. http://doi.org/10.1016/j.ijleo.2018.10.109
27. Reyes-Vera E., Usuga-Restrepo J., Jimenez-Durango C., Montoya-Cardona J., Gomez-Cardona N. Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter // IEEE Photon. J. 2018. V. 10. № 4. P. 5900413. http://doi.org/10.1109/JPHOT.2018.2860251
28. Lee S.-L., Kim J., Choi S., Kim M., Kim D., Lee Y. Polarization-diversified-loop-based optical fiber interleaving filter with polarization-controlled free spectral range // Opt. Commun. 2020. V. 463. P. 125345. http://doi.org/10.1016/j.optcom.2020.125345
29. Zhang B., Chen W., Wang P., Dai S., Jiang W., Liang W., Lu H., Ding J., Li J., Li Y., Fu Q., Dai T., Yu H., Yang J. Switchable polarization beam splitter based on GST-on-silicon waveguides // IEEE Photon. J. 2020. V. 12. № 2. P. 6600610. http://doi.org/10.1109/JPHOT.2020.2977979
30. Sun L.-X. Simultaneous quantitative analysis of multielements in alloy samples by laser-induced breakdown spectroscopy // Spectrosc. Spectr. Anal. 2009. V. 29. № 12. P. 3375–3378. http://doi.org/10.3964/j.issn.1000-0593(2009)12-3375-04
31. Li B., Du B.-Z., Zhu J.-P. Study on planar concave diffraction grating with Bragg reflector facets // Acta Phys. Sin. 2015. V. 64. № 15. P. 154211. http://doi.org/10.7498/aps.64.154211
32. Agour M., Fallorf C., Taleb F., Castro-Camus E., Koch M., Bergmann R.B. Terahertz reference less wave front sensing by means of computational shear-interferometry // Opt. Express. 2022. V. 30. № 5. P. 7068–7081. http://doi.org/10.1364/OE.450708
33. Meinders M., Kroker S., Singh A.P., Kley E.B., Tunnermann A., Danzmann K., Schnabel R. Cancellation of lateral displacement noise of three-port gratings for coupling light to cavities // Opt. Lett. 2015. V. 40. № 9. P. 2053–2055. http://doi.org/10.1364/OL.40.002053
34. Wang J., Zhou C., Ma J., Zong Y., Jia W. Highly efficient reflective Dammann grating with a triangular structure // Appl. Opt. 2016. V. 55. № 19. P. 5203–5207. http://doi.org/10.1364/AO.55.005203
35. Wang J., Zhou C., Ma J., Zong Y., Jia W. Modal analysis of 1ґ3 reflective triangular gratings under normal incidence // Chin. Opt. Lett. 2017. V. 15. № 4. P. 040902. http://doi.org/10.3788/COL201715.040902
36. Cao H., Wu J., Yu J., Ma J. High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating // Appl. Opt. 2018. V. 57. № 4. P. 900. http://doi.org/10.1364/AO.57.000900
37. Liu S., Zhou F., Jin A., Yang H., Ma Y., Li H., Gu C., Lu L., Jiang B., Zheng Q., Wang S., Peng L. Fabrication of graphite nanostructures // Acta Phys. Sin. 2005. V. 54. № 9. P. 4251–4255. http://doi.org/10.7498/aps.54.4251
38. Cui B., Yang Y.-P., Ma P., Yang X.-Y., Ma L.-W. Optical modulation characteristics of all-dielectric grating at terahertz frequencies // Acta Phys. Sin. 2016. V. 65. № 7. P. 074209. http://doi.org/10.7498/aps.65.074209
39. Li H., Yang C.-A., Xie S.-W., Huang S.-S., Chai X.-L., Zhang Y., Wagn J.-L., Niu Z.-C. Laterally-coupled distributed feedback lasers with optimized gratings by holographic lithography etching // J. Infrared Millim. Waves. 2018. V. 37. № 2. P. 140–144. http://doi.org/10.11972/j.issn.1001-9014.2018.02.003
40. Wang B., Zhu W., Li H., Yin S., Su C., Chen L., Lei L., Zhou J. Surface-relief three-port output with a connecting layer grating under the second Bragg condition // Surf. Rev. Lett. 2019. V. 26. № 2. P. 1850140. http://doi.org/10.1142/S0218625X18501408
41. Kaur G., Kaler R. Wavelength remodulation and dispersion compensation for full-duplex radio over fiber system using fiber Bragg grating // Optik. 2019. V. 206. P. 163223. http://doi.org/10.1016/j.ijleo.2019.163223
42. Wang T. Electromagnetic field quantization and quantum optical input-output relation for grating // Sci. Rep. 2019. V. 9. P. 19992. http://doi.org/10.1038/s41598-019-56197-1
43. Hao A., Han Q., Hui Z., He F., Wang Z., Chen D. Imaging analysis of holographic concave grating spectrometer // Optik. 2020. V. 204. P. 164193. http://doi.org/10.1016/j.ijleo.2020.164193
44. Dong D., Liu Y., Fei Y., Fan Y., Li J., Fu Y. Polarization beam splitter based on extremely anisotropic black phosphorus ribbons // Opt. Express. 2020. V. 28. № 6. P. 8371–8383. http://doi.org/10.1364/OE.388845