Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (09.2019) : СОКРАЩЕНИЕ ЭНЕРГОПОТРЕБЛЕНИЯ И УЛУЧШЕНИЕ КОНТРАСТА ДЛЯ ОРГАНИЧЕСКИХ СВЕТОДИОДНЫХ ДИСПЛЕЕВ НА ОСНОВЕ РЕОРГАНИЗАЦИИ ОТОБРАЖАЕМОЙ СЦЕНЫ

СОКРАЩЕНИЕ ЭНЕРГОПОТРЕБЛЕНИЯ И УЛУЧШЕНИЕ КОНТРАСТА ДЛЯ ОРГАНИЧЕСКИХ СВЕТОДИОДНЫХ ДИСПЛЕЕВ НА ОСНОВЕ РЕОРГАНИЗАЦИИ ОТОБРАЖАЕМОЙ СЦЕНЫ

© 2019 г.       Xiaoming Zhao, Xin Liu, Cheng Yang, and Yashuo Bai

Представлен алгоритм снижения энергопотребления и повышения контраста для органических светодиодных дисплеев на основе реорганизации отображаемой сцены. Процесс уменьшения энергопотребления можно рассматривать как извлечение характерных деталей изображения и реорганизацию сцены для удовлетворения потребностей зрительного восприятия человека. В предложенном алгоритме некоторые характеристики, такие как цвет кожи, локальная дисперсия и яркость, настраиваются для описания особенностей изображения и объединяются в модели затухания, сохраняющей контуры. Согласно этой модели проводится реорганизация сцены путем разумного изменения яркости при снижении энергопотребления. В конечном итоге, корректировка яркости гарантирует улучшение изображения. Результаты экспериментов показывают, что предложенный алгоритм обеспечивает лучшее визуальное качество, чем предыдущие алгоритмы, достигая при этом соответствующих уровней энергосбережения.

Ключевые слова: органический светодиодный дисплей, энергосбережение, обработка изображений.

 

Power reduction and contrast enhancement based on scene reconstruction for organic light emitting diode displays

© 2019    Xiaoming Zhao, PhD (Physics); Xin Liu, postgraduate student; Cheng Yang, Master Degree; Yashuo Bai, postgraduate student

Xidian University, School of Physics and Optoelectronic Engineering, Xi’an city, China

E-mail:<baiyashuo@126.com>

УДК 535;517

Submitted 23.04.2019

DOI:10.17586/1023-5086-2019-86-09-38-48

A power reduction and contrast enhancement algorithm based on scene reconstruction for an organic light-emitting diode display is presented. The process of energy saving can be regarded as the extraction of image features and reconstruction of a scene to cater to human visual perception. In the proposed algorithm, some characteristics such as skin color, local variance, and brightness value are adopted to describe image features and are combined into a contour-preserving attenuation model. According to this model, reconstruction of a scene is accomplished through changing the value of the brightness reasonably while saving energy. Finally, enhancement of the image is guaranteed by the process of compensating for the brightness. Experimental results show that the proposed algorithm provides better visual quality than former algorithms and can reach an appropriate energy saving ratio.

Keywords: organic light emitting diode display, energy saving, image processing.

OCIS code: 100.2000

 

References

1.         Jin J., Lim S., Oh M. Technology development and production of flat panel displays in Korea // Proc. IEEE. 2002. V. 90. № 4. P. 501–513.

2.         Chang T.-C., Xu S.S.-D., Su S.-F. SSIM-based quality-on-demand energy-saving schemes for OLED displays // IEEE Trans. Systems, Man, and Cybernetics: Systems. 2016. V. 46. № 5. P. 623–635.

3.         Choi J.-H., Lee M., Kang K., Kim J.-O. Adaptive color saturation control for low power RGBW OLED displays // J. Display Technology. 2016. V. 12. № 8. P. 784–790.

4.        Chondro P., Chang C.-H., Ruan S.-J., Shen C.-A. Advanced multimedia power saving method using dynamic pixel dimmer on AMOLED displays // IEEE Trans. Circuits and Systems for Video Technology. 2018. V. 28. № 9. P. 2200–2209.

5.         Dong M., Zhong L. Power modeling and optimization for OLED displays // IEEE Trans. Mobile Computing. 2012. V. 11. № 9. P. 1587–1599.

6.        Duan L.-T., Guo B., Shen Y., Zhang W.-L. Low image distortion constrained power saving for OLED displays // Internat. J. Signal Proc., Image Proc., and Pattern Recognition. 2015. V. 8. № 11. P. 207–220.

7.         Huang C., Zhang Q., Wang H., Feng S. A low power and low complexity automatic white balance algorithm for AMOLED driving using histogram matching // J. Display Technol. 2017. V. 11. № 1. P. 53–59.

8.        Jin J.-C., Lee J.-H., Kim E.-S., Kim Y.-J. OPT: Optimal human visual system-aware and power-saving color transformation for mobile AMOLED displays // Multimedia Tools and Applications. 2018. V. 77. № 13. P. 16699–16720.

9.        Lee C., Lee C., Kim C.-S. Power-constrained contrast enhancement for OLED displays based on histogram equalization // IEEE Internat. Conf. Image Proc. 2012. V. 21. № 1. P. 1689–1692.

10.       Lee C., Lee C., Lee Y.Y., Kim C.S. Power-constrained contrast enhancement for emissive displays based on histogram equalization // IEEE Trans. Image Process. 2012. V. 22. № 1. P. 80–93.

11.       Li D., Tran A.H., Halfond W.G.J. Making web applications more energy efficient for OLED smartphones // Internat. Conf. Software Engineering. 2014. P. 527–538.

12.       Nam Y.O., Choi D.Y., Song B.C. Power-constrained contrast enhancement algorithm using multiscale retinex for OLED display // IEEE Trans. Image Process. 2014. V. 23. № 8. P. 3308–3320.

13.       Park M., Song M. Saving power in video playback on OLED displays by acceptable changes to perceived brightness // J. Display Technol. 2015. V. 12. № 5. P. 483–490.

14.       Kim S., Hyun S., Heo T., Im D., Huh J. Blind: Power saving color transform method for OLED displays // IEEE Internat. Conf. Consumer Electronics. 2016. P. 500–501.

15.       Choi J.H., Lee M., Kang K., Kim J.O. Adaptive color saturation control for low power RGBW OLED displays// J. Display Technol. 2016. V. 12. № 8. P. 784–790.

16.       Tan K.W., Okoshi T., Misra A., Balan R.K. FOCUS: A usable & effective approach to OLED display power management // ACM Internat. Joint Conf. Pervasive and Ubiquitous Computing. 2013.

17.       Dong M., Choi Y.S.K., Zhong L. Power modeling of graphical user interfaces on OLED displays // Design Automation Conf. 2009. P. 652–657.

18.       Land E.H., Mccann J.J. Lightness and retinex theory // JOSA. 1971. V. 61. № 1. P. 1–11.

19.       Kolkur S., Kalbande D., Shimpi P., Bapat C., Jatakia J. Human skin detection using RGB, HSV and YCbCr color models // Proc. Internat. Conf. Communication and Signal Proc. 2016. V. 137. P. 324–332.

20.      Han Hai. Skin-color detection based on (r, g) & (Cr, Cb) color space // Computer and Modernization. 2003. V. 2. P. 7–9.

21.       Polesel A., Ramponi G., Mathews V.J. Image enhancement via adaptive unsharp masking // IEEE Trans. Image Proc. 2000. V. 9. № 3. P. 505–510.

22.      Avcibas I., Sankur B., Sayood K. Statistical evaluation of image quality measures // J. Electronic Imaging. 2002. V. 11. № 2. P. 206–223.

23.      Hautière N., Tarel J.-P., Aubert D., Dumont É. Blind contrast enhancement assessment by gradient ratioing at visible edges // Image Analysis & Stereology. 2011. V. 27. № 2. P. 87–95.

24.      Ye Z., Mohamadian H., Ye Y. Discrete entropy and relative entropy study on nonlinear clustering of underwater and arial images // IEEE Internat. Conf. Control Applications. 2007. P. 313–318.

 

 

Полный текст