© 2010 г. А. С. Потапов, доктор техн. наук
НПК “Государственный оптический институт им. С.И. Вавилова”, Санкт-Петербург
E-mail: pas.aicv@gmail.com
Рассмотрены тенденции использования подсистем зрения в современных робототехнических системах, в частности, в бытовых роботах, функционирующих в недетерминированной среде. Указаны основные задачи обработки изображений, сопряженные с задачами навигации мобильных роботов. На примере применяемых на практике методов сопоставления изображений, полученных в замкнутом пространстве, установлены основные ограничения методов анализа изображений, используемых в мобильных роботах, и определены перспективы их дальнейшего развития.
Ключевые слова: зрение роботов, обработка изображений, недетерминированная среда.
Коды OCIS: 150.5758
УДК 004.932.2
Поступила в редакцию 17.06.2010
ЛИТЕРАТУРА
1. Юревич Е.И. Основы робототехники. 2-е изд. СПб.: БХВ-Петербург, 2007. 416 с.
2. Козлов Ю.М. Адаптация и обучение в робототехнике. М.: Наука, 1990. 248 с.
3. Bar-Cohen Y., Breazeal C. Biologically inspired intelligent robots. Washington: SPIE Press, 2003. 393 p.
4. Metcalfe J.S., Alban J., Cosenzo K.A., Johnson T., Capstick E. Field testing of tele-operation versus shared and traded control for military assets // Proc. SPIE. 2010. V. 7692. P. 769206–769206–12.
5. Cosenzo K.A., Barnes M.J. Human robot interaction research for current and future military applications: from the laboratory to the field // Proc. SPIE. 2010. V. 7692. P. 769204–769204–9.
6. Huntsberger T., Stoica A. Envisioning cognitive robots for future space exploration // Proc. SPIE. 2010. V. 7710. P. 77100D.
7. Ringbeck Th., Hagebeuker B. A 3D time of flight camera for object detection // Proc. Optical 3D measurement techniques. Z rich. June 09–12 2007. 11 p.
8. Hsu S., Acharya S., Rafii A., New R. Performance of a Time-of-Flight Range Camera for Intelligent Vehicle Safety Applications // Advanced Microsystems for Automotive Applications. 2006. V. XVIII. P. 205–219.
9. Argyros A.A. Robot homing by exploiting panoramic vision // Autonomous Robots. 2005. № 19. P. 7–25.
10. Burbridge C., Spacek L. Omnidirectional vision simulation and robot localisation // Proc. TAROS (Towards Autonomous Robotic Systems). Guildford, UK. September 4–6 2006. P. 32–39.
11. Shih-Schцn Lin. High Resolution Catadioptric Omni-Directional Stereo Sensor for Robot Vision // Proc. 2003 IEEE Intern. Conf. on Robotics & Automation. Taipei, Taiwan. September 14–19 2003. P. 1694–1699.
12. Lee Gim Hee, Marcelo H. Ang Jr. Mobile robots navigation, mapping, and localization / In Encyclopedia of artificial intelligence. N. Y.: Hershey, 2009. P. 1072–1088.
13. Leonard J.J. Directed Sonar Sensing for Mobile Robot Navigation // PhD thesis. Massachusetts Institute of Technology, Department of Engineering Science, Cambridge. 1991. 202 p.
14. Fong T., Nourbakhsh I., Dautenhahn K. A survey of socially interactive robots // Robotics and Autonomous Systems. 2003. V. 42. № 3/4. P. 143–166.
15. Breazeal C., Edsinger A., Fitzpatrick P., Scassellati B. Active vision for sociable robots // IEEE Trans. on Systems, Man, and Cybernetics. 2001. Part A. V. 31. P. 443–453.
16. Zelinsky A., Matsumoto, Heinzmann J., Newman R. Towards human friendly robots: vision-based interfaces and safe mechanisms // Lecture Notes in Control and Information Sciences. 1999. V. 250. P. 487–498.
17. Szenher M. Navigation by image-based visual homing / In Encyclopedia of artificial intelligence. N. Y.: Hershey, 2009. P. 1185–1189.
18. Comport A.I., Marchand E., Chaumette F. Robust model-based tracking for robot vision // IEEE/ RSJ Intern. Conf. on Intelligent Robots and Systems, IROS’04. Sendai, Japan. September 2004. P. 692–697.
19. Tsotsos J., Shubina K. Attention and visual search: active robotic vision system that search // The 5th Intern. Conf. on Computer Vision Systems. Bielefeld, Germany. March 21–24 2007. Keynote lecture.
20. Koschan A. Improving Robot Vision By Color Information // Proc. 7th Intern. Conf. on Artificial Intelligence and Information-Control Systems of Robots. Smolenice Castle, Slovakia. September 10–14 1997. P. 247–258.
21. Westelius C.-J. Focus of attention and gaze control for robot vision // PhD thesis. Linkoping University, Dept. of Electrical Engineering, Sweden. 1995. 185 p.
22. Asada M., Noda S., Tawaratsumida S., Hosoda K. Purposive behavior acquisition for a real robot by vision-based reinforcement learning // Machine Learning. 1996. № 23. P. 279–303.
23. Martine C.M. Genetic programming for real world robot vision // Proc. 2002 IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems (IROS). Lausanne, Switzerland. September-October 2002. P. 67–72.
24. Kira Z. Using conceptual spaces to fuse knowledge from heterogeneous robot platforms // Proc. SPIE. 2010. V. 7710. P. 77100F.
25. Benjamin D.P., Lyons D. A cognitive approach to classifying perceived behaviors // Proc. SPIE. 2010. V. 7710. P. 77100H.
26. Kelley T.D., Avery E. A cognitive robotics system: the Symbolic and Sub-symbolic Robotic Intelligence Control System (SS–RICS) // Proc. SPIE. 2010. V. 7710. P. 77100I.
27. Trafton G., Harrison A. Cognitive plausible robotics // Proc. SPIE. 2010. V. 7710. P. 77100J.
Полный текст