CdHgTe-based nanostructures for photodetectors
S. A. Dvoretskiĭ, Z. D. Kvon, N. N. Mikhaĭlov, V. A. Shvets, A. L. Aseev, B. Wittmann, S. N. Danilov, and S. D. Ganichev
This paper presents the results of growing quantum wells based on HgTe (HgTe/Cd0.735Hg0.265Te) 16.2 and 21nm thick on substrates of (013) CdTe/ZnTe/GaAs by molecular-beam epitaxy. The composition and thickness of the spacer and of the quantum well were monitored by an ellipsometric technique during growth. Galvanomagnetic studies in a wide range of magnetic fields (1-12T) at temperatures close to that of liquid helium (4.2K) showed that a two-dimensional electron gas is present in the nanostructures and that the levels are quantized. High mobilities were obtained for the two-dimensional electron gas: μe=2×105cm2/(V⋅sec) for an electron density of Ns=1.5×1011cm−2 and μe=5×105cm2/(V⋅sec) for Ns=3.5×1011cm−2. The circular and linear photogalvanic effects were studied in the quantum wells at room temperature in a wide wavelength interval: from the mid-IR (6-16μm) to the terahertz range (100-500μm).
ЛИТЕРАТУРА
1. Schulman J.N., McGill T.C. The CdTe/HgTe superlattice: Proposal for a new infrared material // Appl. Phys. Lett. 1979. V. 34. P. 663–665.
2. Goodwin M.W., Kinch M.A., Koestner R.J. Metal– insulator–semiconductor properties of HgTe–CdTe superlattices // J. Vac. Sci. Technol. 1988. V. A6. P. 2685–2692.
3. Zanatta J.P., Noel F., Ballet P., Hidadach N., Million A., Destefanis G., Mottin E., Kopp C., Picard E., Hadji E. HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2–6 mkm range // J. Electron. Mater. 2003. V. 32. № 7. P. 602–607.
4. Zhou Y.D., Becker C.R., Selament Y., Chang Y., Ashokan R., Boreiko R.T., Aoki T., Smith D.J., Betz A.L., Sivananthan S. Far-infrared detector based on HgTe/HgCdTe superlattices // J. Electron. Mater. 2003. V. 32. № 7. P. 608–614.
5. Selament Y., Zhou Y.D., Zhao J., Chang Y., Becker C.R., Ashokan R., Grein C.H., Sivananthan S. HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection // J. Electron. Mater. 2004. V. 33. № 6. P. 503–508.
6. Grein C.H., Jung H., Singh R., Flatte M.E. Comparison of normal and inverted band structure of HgTe/ CdTe superlattices for very long wavelength infrared detector // J. Electron. Mater. 2005. V. 34. № 6. P. 905–908.
7. Ganichev S.D., Prettl W. Intense terahertz exitation in semiconductor // Oxford University Press, 2006. P. 75–78.
8. Дворецкий С.А., Икусов Д.Г., Квон Д.Х., Михайлов Н.Н., Дай Н., Смирнов Р.Н., Сидоров Ю.Г., Швец В.А. Выращивание квантовых ям HgTe/ Cd0,735 Hg 0,265Te методом молекулярно-лучевой эпитаксии // Автометрия. Т. 43. № 4. С. 104–111.
9. Ivchenko E.L. Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International). Harrow. UK. 2005. 427 р.
10. Ganichev S.D., Ivchenko E.L. Spin Physics in Semiconductors / Еd. M.I. Dyakonov. In the Springer series in solid state sciences / Eds. M. Cardona, P. Fulde, K. von Klitzing, R. Merlin, H.-J. Queisser, H. Stцrmer. Berlin: Springer, 2008. 439 p.
11. Wittmann B., Danilov S.N., Kvon Z.D., Mikhailov N.N., Dvoretsky S.A., Ravash R., Prettl W., Ganichev S.D. Photogalvanic effects in HgTe quantum wells // arXiv cond-mat: 0708.2169 (2007).
12. Ganichev S.D., Weber W., Kiermaier J., Danilov S.N. , Schuh D., Wegscheider W., Gerl Ch., Bougeard D., Abstreiter G., Prettl W. All-electric detection of the polarization state of terahertz laser radiation // J. Appl. Physics. 2008. V. 103. P. 114504.
13. Zhang X.C., Pfeuffer-Jeschke A., Ortner K., Hock V., Buhmann H., Becker C.R., Landwehr G. Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure // Phys. Rev. 2001. V. B63. P. 245305.
Полный текст