-
˻
1931
 
   
   
       
   
       



2008



2000-2010


444

2002-2007




!
-
-
-
-
-
-











19.02.2010 ,
(12.2012) : SPECTRAL RESONANT PROPERTIES OF REFLECTED LIGHT FOR METAL DIELECTRIC SUBWAVELENGTH GRATINGS IN VISIBLE REGIONS ,

SPECTRAL RESONANT PROPERTIES OF REFLECTED LIGHT FOR METAL DIELECTRIC SUBWAVELENGTH GRATINGS IN VISIBLE REGIONS ,

 

© 2012 .    Yongli Chen1, 2*; Wenxia Liu2; Shengyan Cai2

 

1 Center for THz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin

University, Tianjin 300072, China

2 College of Packaging & Printing Engineering, Tianjin University of Science & Technology, Tianjin

300222, China

* Corresponding author: bit_ylchen@126.com

A metal-dielectric grating consists of alternating metal and dielectric materials with

period less than single wavelength of visible radiations. Optical behaviors of reflection

spectra of this grating for s-polarized and p-polarized incident white light are studied

systematically. For reflected light, it is the p-polarized light rather than s-polarization

shows unusual optical behaviors with characteristics of single-peak spectra, higher peak

efficiencies of higher than 75% and lower off-resonant efficiencies. The spectral width

of  p-polarized  light  with  desirable  frequency-selective  functions  is  much  wider.  There

exist two resonant areas for p-polarizations extending toward each other as filling factors

increase,  and  positions  of  the  resonances  are  mainly  determined  by  grating  periods

existing linear relationships between them. For making positions of resonances occur in

visible wavelengths, filling factors and grating periods should be respectively designed

between 0.5 and 0.6 and between 0.25 and 0.45 mm. The newly observed properties of

p-polarized lights can be used to exploit novel devices for reflection applications in the

fields of optical securities and color filters.

Keywords: Color, diffraction gratings, resonance, optical security and encryption.

odes OCIS: 050.1950, 260.5740.

535.3

Received 29.03.2012.

REFERENCES

1. Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics, Nature 424, 2003. P. 824–830.

2. Sergeant  N.P.,  Agrawal  M.,  Peumans  P.  High  performance  solar-selective  absorbers  using  coated  sub-wave-

length gratings // Opt. Express 18. 2010. . 5525–5540.

3. Foulkes J.E. Blaikie R.J. Influence of polarization on absorbance modulated subwavelength grating structu-

res // J. Vac. Sci. Technol. B 27. 2009. . 2941–2946.

4. Raquel  G.M.,  Marine  L.,  Juan  J.S.  Extraordinary  optical  reflection  from  sub-wavelength  cylinder  arrays  //

Opt. Express 14, 2006, pp.3730–3737.

5. Tompkin W.R., chilling A., Staub R. Color-shifting features for optically variable devices // Proc. SPIE 5310.

2004. . 244–255.

6. Tompkin W.R., Schilling A., Herzig H.P. Zero-order gratings for optically variable devices // Proc. SPIE 4677.

2002. . 227–237.

7. Magnusson R., Shokooh-Saremi M., Johnson E.G. Guided-mode resonant wave plates // Opt. Lett. 35. 2010.

. 2472–2474.

8. Zhang W., Azad A.K., Han J., Xu J., Chen J., Zhang X.-C. Direct observation of a transition of a surface plasmon

resonance from a photonic crystal effect // Phys. Rev. Lett. 98. 2007. . 183901.

9. Gadsdon  M.R.,  Hooper  I.R.,  Hibbins  A.P.,  Sambles  J.R.  Surface  plasmon  polaritons  on  deep,  narrow-ridged

rectangular gratings // J. Opt. Soc. Am. B 26. 2009. . 1228–1237.

10. Andersson  H.,  Kgedal  B.,  Mandenius  C.F.  Monitoring  of  troponin  release  from  cardiomyocytes  during

exposure  to  toxic  substances  using  surface  plasmon  resonance  biosensing,  Anal.  Bioanal.  Chem.  398.  2010.

P. 1395–1402.

11. Andkjr J., Nishiwaki S., Nomura T., Sigmund O. Topology optimization of grating couplers for the efficient

excitation of surface plasmons // J. Opt. Soc. Am. B 27. 2010. . 1828–1832.

12. Chremmos  I.  Magnetic  field  integral  equation  analysis  of  interaction  between  a  surface  plasmon  polariton 

and a circular dielectric cavity embedded in the metal // J. Opt. Soc. Am. A 26. 2009. . 2623–2633.

13. Palik E.D., ed. Handbook of Optical Constants of Solids, Academic, Orlando, Fla., 1985.

14. Brenner K.H. Aspects for calculating local absorption with the rigorous coupled-wave method, Opt. Express

15. Yang D., Lu H.H., Chen B., Lin C.W. Surface Plasmon Resonance of SnO2/Au Bi-layer Films for Gas Sensing

Applications, Sens. Actuators. B 145. 2010. . 832–838.