-
˻
1931
 
   
   
       
   
       



2008



2000-2010


444

2002-2007




!
-
-
-
-
-












19.02.2010 ,
(12.2012) : THEORETICAL INVESTIGATION AND ANALYSIS OF TIME RESPONSE IN HETEROSTRUCTURE GEIGER-APD PD-

THEORETICAL INVESTIGATION AND ANALYSIS OF TIME RESPONSE IN HETEROSTRUCTURE GEIGER-APD PD-

 

© 2012 .    Mehdi Dehghan

 

Department of Electrical Engineering, Firoozabad Branch, Meymand Center, Islamic Azad University,

Meymand, Iran

E-mail: m_dehghan592@yahoo.com

In  this  paper  the  mean  current  impulse  response  and  standard  deviation  in  Geiger

mode  for  heterostructure  APD  are  determined.  The  model  is  based  on  recurrence

equations. These equations are solved numerically to calculate the mean current impulse

response  and  standard  deviation  as  a  function  of  time.  In  this  structure  we  illustrate

the  multiplication  region  with  different  ionization  threshold  energies  that  the  impact

ionization  of  the  injected  carrier  type  is  localized  and  the  feedback  carrier  type  is

suppressed.  In  fact  for  this  structure,  better  control  of  spatial  distribution  of  impact

ionization  for  both  injected  and  feedback  carriers  can  be  achieved.  By  enhancing  the

control of impact-ionization position, the structure achieved to high gain and very low

noise.

Keywords: Avalanche Photodiode, Geiger mode, I2E structure, Dark Count.

odes OCIS: 040.1345.

621.383

REFERENCES

1. Tan C.H., David J.P.R., Plimmer S.A., Rees G.J., Tozer R.C., Grey R. // IEEE Trans. Electron Devices. 2001.

V. 48. P. 1310–1317.

2. Groves C., Chia C.K., Tozer R.C., David J.P.R., Rees G.J. // IEEE J. Quantum Electron. 2005. V. 41. P. 70–75.

3. Chin R., Holonyak N., Stillman G.E., Tang J.Y., Hess K. // Electron. Lett. 1980. V. 16. P. 467–469.

4. Chia C.K., Ng B.K., David J.P.R., Rees G.J., Tozer R.C., Hopkinson M., Airey R.J., Robson P.N. // J. Appl. Phys.

2003. V. 94. P. 2631–2637.

5. Kown O. // IEEE J. Quantum Electron. 2003. V. 39. P. 1287–1296.

6. Groves  C.,  Tan  C.H.,  David  J.P.R.,  Ress  G.J.,  Hayat  M.M.  //  IEEE  Trans.  Electron  Devices.  2005.  V.  52.

P. 1527–1534.

7. Moll J.L., Meyer N. Solid State Electron. 1961. V. 3. P. 155–161.

8. Saleh M.A., Hayat M.M., Saleh B.E.A., Teich M.C. IEEE Trans. Electron Devices. 2000. V. 47. P. 625–633.

9. Plimmer S.A., David J.P.R., Grey R., Rees G.J. IEEE Trans. Electron Devices. 2000. V. 47. P. 1089–1097.

10. Tan C.H., Hambleton P.J., David J.P.R., Tozer R.C., Rees G.J., Lightwave J. Technol. 2003. V. 21. P. 155–159.

11. Hayat M.M., Saleh B.E.A., Lightwave J. Technol. 1992. V. 10. P. 1415–1425.

12. Chen W., Liu Sh. IEEE Journal of Quantum Electronics. 1996. V. 32. 2105–2111.

13. Wang  S.,  Sidhu  R.,  Zheng  X.G.,  Li  X.,  Sun  X.,  Holmes  A.L.,  Jr.,  Campbell  J.C.  IEEE  Photon.  Technol.  Lett. 

2001. V. 13. P. 1341–1348.