Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (02.2015) : PLASMON RESONANCE EXCITATION AND NEAR-FIELD MANIPULATING IN GOLD NANOPYRAMID ARRANGEMENTS AT THE TELECOMMUNICATION SPECTRUM

PLASMON RESONANCE EXCITATION AND NEAR-FIELD MANIPULATING IN GOLD NANOPYRAMID ARRANGEMENTS AT THE TELECOMMUNICATION SPECTRUM

 

© 2015 г.     Arash Ahmadivand* and Saeed Golmohammadi**

*   Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran

** School of Engineering-Emerging Technologies, University of Tabriz, Tabriz 5166614761, Iran

Е-mail: a_ahmadivand@iau-ahar.ac.ir

In this work, we investigated the optical characteristics of a gold nanopyramid with certain geometrical dimensions to generate surface plasmons inside it at the near infrared region. The approximate geometrical sizes for all of the revisable dimensions have been computed based on the position and peak of the plasmon resonance at wavelength 1550 nm. The influence of absorption and scattering of light as dissipative and lossy components on the optical response of the non-spherical configuration have been discussed numerically. Employing examined pyramid in a chain, we measured the quality of the near-field coupling between series pyramids and the optical properties of the provided plasmon waveguide have been determined. Moreover, the group velocity of guided waves and transmission loss factors along the nanostructure have been quantified as vgT = 0.23c0, vgL = 0.41c0 and γT = 3 dB/452 nm, γL = 3 dB/312 nm for transverse and longitudinal polarization modes, respectively. Finite-difference time-domain method has been utilized as a major solution to extract the optical properties of the proposed configurations.

Keywords: Surface plasmons, Gold nanopyramid, Near infrared region, and Finite-difference time-domain method.

OCIS codes: 240.6680, 160.4760, 130.3060

Submitted 29.04.2014

 

References

1.         Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988.

2.         Saleh B.E.A., Teich M.C. Fundamentals of Photonics. Wiley, 1991.

3.         Kreibig U. and Vollmer M. Optical Properties of Metal Clusters. Springer, 1995.

4.        Bohren C.F., Huffman D.R. Absorption, and Scattering of Light by Small Particles. Wiely & Sons, 1998.

5.         Jackson J.D. Classical Electrodynamics. Wiley & Sons, 1998.

6.        Mock J.J., Smith D.R., and Schutz S. Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles // Nano Lett. 2003. V. 4. P. 485–491.

7.         Maier S.A., Brongersma M.L., Kik P.G., Meltzer S., Requicha A.A.G., and Atwater H.A. Plasmonics-A Route to Nanoscale Optical Devices // Adv. Mat. 2001. V. 19. P. 1501–1505.

8.        Maier S.A., Kik P.G., and Atwater H.A. Optical Pulse Propagation in Metal Nanoparticle Chain Waveguides // Phys. Rev. B. 2002. V. 67. P. 205402.

9.        Jung K.Y., Teixeira F.L., Reano R.M. Au/SiO2 Nanoring Plasmon Waveguides // at Opt. Commun. Band, IEEE J. Lightwave Tech. 2007. V. 9. P. 2757–2764.

10.       Rayford C.E., Schatz G., Shuford K. Optical Properties of Gold Nanospheres // Nanoscape. 2005. V. 2. P. 27–33.

11.       Stoleru V.G. and Towe E. Optical Properties of Nano-Meter Sized Gold Spheres And Rods Embaded in Anodic Alumina Matrices // Appl. Phys. Lett. 2004. V. 85. P. 5152–5154.

12.       Novotny and Hafner C. Light Propagation in a Cylindrical Waveguide with a Complex, Metallic, Dielectric Function // Phys. Rev. E. 1994. V. 50. P. 4094–4106.

13.       Pile D.F.P. and Gramutnev D.K. Channel Plasmon-Polarition in a Triangular Groove on a Metal Surface // Opt. Lett. 2004. V. 29. P. 1069–1071.

14.       Averitt R.D., Sarkar D., and Halas N.J. Plasmon Resonant Shift of Au Coated Au2S Nanoshells: Insight into Multi Component Nanoparticle Growth // Phys. Rev. Lett. 1997. V. 78. P. 4217–4219.

15.       Feigenbaum E. and Arresting M. Modeling of Complementary (void) Plasmon Waveguiding //J. Lightwave. Technol. 2007. V. 25. P. 2547–2562.

16.       Guo X., Qiu M., and Tong L. Direct Coupling of Plasmonic and Photonic Nanowires for Hybrid Nanophotonic Components and Circuits // ACS. Nano. Lett. 2009. V. 9. P. 4515–4519.

17.       Ahmadivand A., Golmohammadi S., Rostami A. T and Y-Splitters Based on an Au/SiO2 Nanoring Chain at an Optical Communication Band // Appl. Opt. 2012. V. 51. P. 2784–2793.

18.       Heinzelmann H. and Pohl D.W. Scanning Near-Field Optical Microscopy // Appl. Phys. A, Solids Surf. 1994. V. 59. P. 89–101.

19.       Stockle R.M., Suh Y.D., Deckert V., and Zenobi R. Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy // Chem Phys. Lett. 2000. V. 318. P. 131–136.

20.      Nie S. and Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering // Science. 1997. V. 275. P. 1102–1106.

21.       Oulton R.F., Sorger V.J., Genov D.A., Pile D.F.P., and Zhang X. A Hybrid Plasmonic Waveguide for Sub-Wavelength Confinement and Long-Range Propagation // Nat. Photon. Lett. 2008. V. 2. P. 496–500.

22.      Nam J.M., Thaxon C.S., and Mirkin C.A. Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins // Science. 2003. V. 301. P. 1881–1886.

23.      Ahmadivand A. and Golmohammadi S. Comprehensive Investigation of Noble Metal Nanoparticles Shape, Size and Material on the Optical Response of Optimal Plasmonic Y-Splitter Waveguides // Opt. Commun. 2014. V. 310. P. 1–11.

24.      Xi Zh.H., Ying G., and Huang G.Q. A Visible-Near Infrared Tunable Waveguide on Plasmonic Gold Nanoshell // IOP, Chin. Phys. B. 2008. V. 14. P. 2567–2573.

25.      Jin M., Pully V., Otto C., Berg A.V.D., and Carlen E.T. High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman-Spectroscopy // J. Phys. Chem. C. 2010. V. 114. P. 21953–21959.

26.      Sun Ch.H., Linn N.C., and Jiang P. Templated Fabrication of Periodic Nanopyramid Arrays // Chem. Matter. 2007. V. 19. P. 4551–4556.

27.       Brongersma M.L., Hartman J.W., Atwater H.A. Electromagnetic Energy Transfer and Switching in Nanoparticle Chain Arrays below the Diffraction Limit // Phys. Rev. B. Condens. Matter. 2000. V. 62. P. R16356–R16359.

28.      Quinten M., Leitner A., Krenn J.R., and Aussenegg F.R. Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles // Opt. Lett. 1998. V. 23. P. 1331–1333.

29.      Taflove A. and Hagness S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, 2000.

30.      Palik E.D. Handbook of Optical Constants of Solids. Academic Press, 1991.

31.       Centeno A., Breeze J., Ahmed B., Reehal H., and Alford N. Scattering of Light into Silicon by Spherical and Hemispherical Silver Nanoparticles // Opt. Lett. 2010. V. 35. P. 76–78.

32.      Akimov Y.A., Ostrikov K., and Li E.P. Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cell // Plasmonics. 2009. V. 4. P. 107–113.

 

 

Полный текст >>>