Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (02.2015) : LARGE-AREA THREE-DIMENSIONAL PROFILOMETER BASED ON DIGITAL MICROMIRROR DEVICE

LARGE-AREA THREE-DIMENSIONAL PROFILOMETER BASED ON DIGITAL MICROMIRROR DEVICE

 

© 2015    Yunbo Zhang*; Aijun Zeng*, **; Huijie Huang*, **; Wenmei Hou***

*     Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, PR China

**   University of the Chinese Academy of Sciences, Beijing, PR China

*** Department of Optical-Electrical and Computer Engineering, University Shanghai for Science and Technology, Shanghai, PR China

Е-mail: realzhangyunbo@gmail.com, aijunzeng@siom.ac.cn

Single pinhole scanning confocal microscope is suffering from scanning speed. This paper studies on a large-area profilometer with multiple virtual pinholes. A digital micromirror device comprised of millions of micromirrors generates multiple virtual pinholes which are utilized for parallel scanning. The key parameters affecting the measurement can be configured conveniently by the digital micromirror device controller. The working principles of digital micromirror device base confocal microscope have been analyzed and a setup has been built up. Tomographic images are acquired and the depth response curves are extracted. A structured silicon sample is measured and three dimensional results have been reconstructed. The system repeatability is better than 60 nm.

Keywords: confocal microscope system, digital micromirror device, tomographic image.

OCIS codes: 170.1790, 180.6900, 110.6880

Submitted 11.04.2014

References

1.         Kim T., Kim S.H., Do D.H., Yoo H.I., and Gweon D.G. Chromatic Confocal Microscopy with a Novel Wavelength Detection Method Using Transmittance // Opt. Exp. 2013. V. 21. № 5. P. 6286–6294.

2.         Minsky M. Memoir on Inventing the Confocal Scanning Microscope // Scanning. 1988. V. 10. № 4. P. 128–138.

3.         Summers J.A., Yang T., Tuominen M.T., and Hudgings J.A. High Contrast, Depth-Resolved Thermoreflectance Imaging Using a Nipkow Disk Confocal Microscope // Rev. Sci. Instrum. 2010. V. 81. № 1. P. 014902.

4.        Tiziani H.J., and Uhde H.M. Three-Dimensional Analysis by a Microlens-Array Confocal Arrangement // Appl. Opt. 1994. V. 33. № 4. P. 567–572.

5.         Zhang Y.B., Strube S., Molnar G., Danzebrink H.U., Dai G.L., Bosse H., and Hou W.M. Parallel Large-Range Scanning Confocal Microscope Based on A Digital Micromirror Device // Optik. 2013. V. 124. № 13. P. 1585–1588.

6.        Chen L.C., Kao W.C., and Huang Y.T. Autimatic Full-Field 3-D Profilometry Using White Light Concoal Microscopy with DMD-based Fringe Project // Mater. Sci. Forum. 2006. V. 505–507. № 61. P. 361–366.

7.         Dudley D., Duncan W., and Slaughter J. Emerging Digital Micromirror Device (DMD) Applications // Proc. SPIE. 2003. V. 4985. P. 14–25.

8.        Gu M. Principles of Three-Dimensional Imaging in Concoal Microscopes // Singapore, Textstream, 1996.

9.        Corle T.R., Chou C.-H., and Kino G.S. Depth Response of Confocal Optical Microscopes // Opt. Lett. 1986. V. 11. № 12. P. 770–772.

10.       Sheppard C.J.R., and Matthews H.J. The Extended-Focus, Auto-Focus and Surface-Profiling Techniques of Confocal Microscope // J. Mod. Opt. 1988. V. 35. № 1. P. 145–154.

 

 

Полный текст >>>