Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

УВАЖАЕМЫЕ ПОДПИСЧИКИ НАШЕГО ЖУРНАЛА!
По техническим причинам «Оптический журнал» не попал в каталог агентства «Роспечать» на II полугодие 2018 г., что делает невозможной подписку на него на почте. Предлагаем оформить подписку на II полугодие 2018 в редакции журнала удобным Вам способом. Стоимость подписки на полугодие сохраняется (6600 руб.).
На первое полугодие 2019 и далее подписка будет проводится в ранее существовавшем порядке через "Роспечать", "УралПресс" и другие агенства печати.

Связаться с нами можно по т. (812) 315-05-48, Е-mail: beditor@soi.spb.ru

Аннотации (01.2016) : SEASONAL INVESTIGATION ON PREDICTION ACCURACY OF ATMOSPHERIC TURBULENCE STRENGTH WITH A NEW MODEL AT PUNALKULAM, TAMIL NADU

SEASONAL INVESTIGATION ON PREDICTION ACCURACY OF ATMOSPHERIC TURBULENCE STRENGTH WITH A NEW MODEL AT PUNALKULAM, TAMIL NADU

 

© 2016   A. Arockia Bazil Raj*, Associate Professor; J. P. Lancelot**, Engineer

*   Laser Communication Laboratory, Kings College of Engineering, Punalkulam-613 303, Thanjavur, Tamil Nadu, India

** Photonics Division, Indian Institute of Astrophysics, Bangalore-560 034, Karnataka, India

Е-mail: brazilraj.a@gmail.com

Atmospheric parameters strongly affect the performance of Free Space Optical Communication system when the optical wave is propagating through the inhomogeneous turbulence transmission medium. Developing models to get an accurate prediction of turbulence strength (Cn2) according to meteorological parameters becomes significant to understand the behavior of channel in different seasons. A dedicated Free Space Optics link for the range of 0.5 km at an altitude of 15.25 m is established and explained. The power level and beam centroid information of the received signal with meteorological parameters at the same time are continuously measured using the optoelectronic assembly and developed weather station respectively and stored in a data logging computer. The existing models selected, based on exhibiting relatively less prediction error, for comparative analysis are briefed. Measured meteorological parameters (as input factors) and Cn2 (as response factor) of size [20004] are used for linear regression analysis and to design the empirical models more suitable at the test field. Along with the model formulation methodologies, contribution of input factors individual and combined effects on the response surface and coefficient of determination (R2) estimated using Analysis of Variable tools are presented. Model equation-V (R2 = 98.93%) is finalized for predicting Cn2. In addition, the prediction accuracy of the proposed and selected models for different seasons in one year period are investigated and validated in terms of Sum of Absolute Error (SAE). The average SAE of 0.00064110–9 m–2/3 for Cn2 is achieved using the new model in longer range dynamic of meteorological parameters during different local seasons.

Keywords: meteorological data, regressive model, model equation-V, scintillation, beam wandering, and optical turbulence strength.

OCIS codes: 010.1330, 120.3940, 200.2605, 330.7326, 290.5930

Submitted 03.07.2014

ЛИТЕРАТУРА

1.         Brandenburg J.C. Signal detection for optical communications through the turbulent atmosphere // IEEE Trans. Commun. 2009. V. 57. № 11. P. 3425–3432.

2.         GappmairA.A. Further results on the capacity of free-space optical channels in turbulent atmosphere // IET Commun. 2011. V. 5. Iss. 9. P. 1262–1267.

3.         Raj A.B., Selvi A.A.V., Kumar J. D., and Raghavan S. Intensity feedback-based beam wandering mitigation in free-space optical communication using neural control technique // EURASIP Journal on Wireless Communications and Networking. 2014. V. 160. P. 1–18.

4.        Ni W., Miyamoto Y., Wakamori K., Kazaura K., Matsumoto M., Higashino T., Tsukamoto K., and Komaki S. Experimental study of atmospheric turbulence effects on RoFSO communication systems // PIERS Online. 2009. V. 5. № 1. P. 65–70.

5.         Silva V.N.H., Barbero A.P.L., and Ribeiro R.M. A new triangulation-like technique for the evaluation of the refractive index structure constant (Cn2) in free-space optical links // J. Lightwave Technol. 2011. V. 29. № 24. P. 3603–3610.

6.        Zamek S. and Yitzhaky Y. Turbulence strength estimation from an arbitrary set of atmospherically degraded images // J. Opt. Soc. America A. 2006. V. 23. № 12. P. 3106–3113.

7.         Tunick A. Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path // Opt. Exp. 2008. V. 16. Iss.19. P. 14645–14654.

8.        Mudge K.A., Silva K.K.M.B.D., Clare B.A., Grant K.J., and Nener B.D. Scintillation Index of the free space optical phase screen modeling and experimental results // International. Conf. “Space Optical Systems and Applications”. Santa Monica, 2011. P. 403–409.

9.        Recolons J., Andrews L.C., and Philips R.L. Analysis of beam wander effects for a horizontal-path propagating gaussian-bam wave: Focused beam case // Opt. Eng. 2007. V. 46. № 8. P. 1–11.

10.       Raj A.A.B., Selvi J.A.V. Comparison of different models for ground-level atmospheric attenuation prediction with new models according to local weather data for FSO applications // J. Opt. Commun. 2015. V. 54. Iss. 4. P. 802–815.

11.       Leclerc T.T., Philips R.L., Andrews L.C., Wayne D.T., Saucer P., and Crabbs R. Prediction of the ground-level refractive index structure parameter from the measurement of atmospheric conditions // SPIE Conf. “Atmospheric Propagation VII”. Florida, 2010. Part. 7685. P. 1–8.

12.       Sadot D., Kopeika N.S. Forecasting optical turbulence strength on the basis of macroscale meterology and aerosols: Models and validation // Opt. Eng. 1992. V. 31. № 2. P. 200–212.

13.       Doss-Hammel S., Oh E., Ricklin J., Eaton F., Gilbert C., Tsintikidis D. A comparison of optical turbulence model // SPIE Conf. “Free-Space Laser Communications IV”. Denver, CO, 2004. Part 5550. P. 236–245.

14.       Yitzhaky Y., Dror I., and Kopeika N.S. Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions // Opt. Eng. 1997. V. 36. № 11. P. 3064–3072.

15.       Bendersky S., Kopeika N.S., and Blaunstein N. Atmospheric optical turbulence over land in Middle East coastal environments: Prediction modeling and measurements // Appl. Opt. 2004. V. 43. № 20. P. 4070–4079.

16.       Monin A.S. and Obukhov A.M. Basic law of turbulent mixing near the ground // J. Geophysical Institute of Slovak Academy of Sciences, USSAR. 1954. V. 24. № 151. P. 163–187.

17.       Majumdar A.K., Eaton F.D., Jensen M.L., Kyrazis D.T., Schumm B., Dierking M.P., Shoemake M.A., Dexheimer D., and Ricklin J.C. Atmospheric turbulence measurements over desert site using ground-based instruments, kite/tethered – blimp platform and aircraft relevant to optical communications and imaging systems: Preliminary results // SPIE Conf. “Free-Space Laser Communications VI”. San Diego, California, USA, 2006. Part 6304. P. 1–12.

18.       Raj A.A.B., Selvi J.A.V., and Raghavan S. Real-time measurement of meteorological parameters for estimating low-altitude atmospheric turbulence strength (Cn2) // IET Science, Measurement & Technology. 2014. V. 8. Iss. 6. P. 459–469.

19.       Randall D. An introduction to atmospheric modeling. USA, Colorado State University, 2004.

20.      Arockia Bazil А., Selvi J.A.V., Kumar D., Raghavan S. Design of cognitive decision making controller for autonomous online adaptive beam steering in free space optical communication system // Wireless Personal Communications. 2015. V. 84. № 1. P. 765–799.

21.       Tunick A. Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path // Opt. Exp. 2007. V. 15. № 7. P. 3619–3628.

22.      Zamek S., Yitzhaky Y. Turbulence strength estimation from an arbitrary set of atmospherically degraded images // J. Opt. Soc. America A. 2006. V. 23. № 12. P. 3106–3113.

23.      Gupta S.K., Mathew S.K., and Venkatakrishnan P. Development of solar scintillometer // J. Astrophysics. 2006. V. 27. P. 315–320.

24.      Andrews L.C., Phillips R.L., and Hopen C.Y. Laser beam scintillation with applications // Proc. SPIE, USA. 2001.

25.      Raj A.B., Selvi J.A.V., Kumar D., and Sivakumaran N. Mitigation of beam fluctuation due to atmospheric turbulence and prediction of control quality using intelligent decision-making tools // Appl. Opt. 2014. V. 53. № 15. P. 3796–3806.

26.      Smith S.T. MATLAB Advanced GUI Development. USA: Dog Ear Publishing, 2006.

27.       Font C.O., Chang M.P.J.L., Oh E., and Gilbreath C. Humidity contribution to the refractive index structure function Cn2 // SPIE Conf. “Atmospheric Propagation III”. Florida, 2006. Part 6215. P. 1–9.

 

 

Полный текст >>