袜篦眍-蝈蹴梓羼觇
弦茸叛嗜 朴型浪
桤溧弪 1931 泐溧
 
   
畜耨觇 忄痂囗 襦轵 理汶栝耜栝 忄痂囗 襦轵
   
       
   
       
羊囹 镱耠邃礤泐 恹矬耜

蓦尻蝠铐睇 忮瘃梃
恹矬耜钼 磬麒磬 2008


离羿忤蝽 箨噻囹咫
2000-2010


444
鲤蹊 钽豚怆屙栝
恹矬耜钼 2002-2007


绣赈桤栩 噤疱襦

马桁囗棹 噔蝾痤 疱鲥礴屙蝾!
- 项漕 矬犭桕圉梃
- 项漕 疱鲥礴桊钼囗 耱囹彘
- 诣镱忸 漕泐忸
- 橡噔桦 铘铕祀屙
- 项塍麇龛 噔蝾瘃觐泐 忸珥嚆疣驿屙
- 绣溧牿桀眄 桕


暑眚嚓螓

项滹桉赅

枢痱 襦轵




企痦嚯 01.12.2015 漕矬 吕 潆 矬犭桕圉梃 铖眍忭 疱珞朦蜞蝾 滂耨屦蜞鲨 赅 桤溧龛, 怩钿 戾驿箜囵钿睇 疱翦疣蜩忭 徉琨 耔耱屐 鲨蜩痤忄龛 (Web Science, Scopus) (耢. Vak.ed.gov.ru/87)
理眍蜞鲨 (01.2017) : 论盐饰世着岩屡屯肋 门团欣秩 衔宋盐论 乩了瓮温 屠 窝臀屡 蜗胰倘抢秩 寥屠型壅 侠乙判臀 呐晕视讶形率紊

论盐饰世着岩屡屯肋 门团欣秩 衔宋盐论 乩了瓮温 屠 窝臀屡 蜗胰倘抢秩 寥屠型壅 侠乙判臀 呐晕视讶形率紊

 

© 2017 .     X.-X. Li; Zh.-J. Zhang

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai, China

茵艴戾痦 疱觐眈蝠箨鲨 钺牝钼 疱嚯铎 怵屐屙 磬躅滂 怦 犷朦 镳桁屙屙桢 疣珉梓睇 钺豚耱. 蒡 镳邃怆弪 镱恹眄 蝠遽钼囗 钺睇 戾蝾溧, 铖眍忄眄 磬 耱痼牝箴桊钼囗眍 铖忮龛, 鬣耱眍耱, 鲨麴钼铋 镳铄牿梃 镱腩耦恹 犭铐钼. 义蹴桕 徼磬痦铋 溴纛牦耔痤怅 镳桁屙栩咫 鲨麴钼铋 镳铄牿梃 镱腩耦恹 犭铐钼 礤 蝾朦觐 耋耱忮眄 镱恹弪 镳铊玮钿栩咫铖螯 耔耱屐 镳 邋 疣犷蝈 疱嚯铎 怵屐屙, 眍 耋耱忮眄 篑蝠囗弪 礤腓礤轫铖螯 镳铄牝铕. 袜桦篦扈 耩邃 镳铟桴 戾蝾漕 怆 铒蜩扈玎鲨铐睇 戾蝾潲, 铖眍忄眄 磬 疣珈囗梃 镱腩. 义 礤 戾礤,  戾蝾潲 桁妣 溻 铟邂桎睇 礤漕耱囹赅: 鲥脲忄 趔黻鲨 铒疱溴弪 聃钿耱忸 镱 钺 桧蝈眈桠眍耱 桡眍痂痼弪 戾耱睇 镱漕徼, 铒蜩扈玎鲨铐磬 耱痼牝箴 鬣耱 礤翦牝桠磬 桦 玎蝠囹磬 镱 怵屐屙. 疣犷蝈 怙屦恹 镳邃腩驽磬 眍忄 鲥脲忄 趔黻鲨, 怅膻鬣 麟屙, 铗忮鬣栝 玎 钺 桧蝈眈桠眍耱, 腩赅朦睇 耱痼牝箴睇 麟屙, 镱腠铖螯 铞屙桠帼 镱漕徼. 泥脲, 桉镱朦珙忄磬 戾蝾漕腩汨 铒蜩扈玎鲨, 怅膻鬣 汨狃桎睇 铒蜩扈玎鲨铐睇 嚯泐痂蜢 镱漉钿 镱塍镥痂钿眍 铒蜩扈玎鲨. 橡彖祗耱忄 镳邃腩驽眄铋 鲥脲忸 趔黻鲨 铒蜩扈玎鲨铐眍 戾蝾漕腩汨, 蜞赕 箅篦龛 赅麇耱忄 镱恹龛 耜铕铖蜩 蝠艴戾痦铋 疱觐眈蝠箨鲨 镳钿屐铐耱痂痤忄睇 赅 矬蝈  麒耠屙眍泐 祛溴腓痤忄龛, 蜞 耧屦桁屙蜞朦眍.

孰邂 耠钼: 蝠艴戾痦 疱觐眈蝠箨鲨, 鲨麴钼 镳铄牿 镱腩耦恹 犭铐钼, 蝈蹴桕 徼磬痦铋 溴纛牦耔痤怅, 汨狃桎睇 嚯泐痂蜢 “徼磬痦 戾蝾 痤 鬣耱桷 – 沐礤蜩麇耜栝 嚯泐痂蜢”.

HIGH-QUALITY FRINGE PATTERN GENERATION BASED ON BINARY PATTERN OPTIMIZATION WITH PROJECTOR DEFOCUSING

© 2017    X.-X. Li, Doctoral candidate of information science; Z.-J. Zhang, Doctor of electronic science

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China

-mail: megres.li@foxmail.com

The real-time three-dimensional reconstruction is increasingly important in many fields. However, it is a challenge for the conventional digital fringe projection technique. The binary defocusing technique applied to the digital fringe projection technique not only significantly improves the real-time performance but also fundamentally eliminates the nonlinearity of projector. In the existing techniques, the dithering techniques based on optimization are superior to the others. However, those optimization methods have two obvious drawbacks: the objective function just qualifies the global intensity similarity while ignores the local similarity, and the optimization framework is inefficient or time-consuming. This paper first presents a novel objective function consisting of a global intensity term and a local structure term to comprehensively evaluate similarity. Second, a model optimization framework, which includes a hybrid optimization algorithm and a half period optimization idea, is employed. Both simulations and experimental results show the advantages of the proposed objective function and the optimization framework, as well as the improvement of quality and speed of 3D reconstruction.

Keywords: 3D reconstruction, digital fringe projection, binary dithering technique, BPSO-GA hybrid algorithm.

OCIS codes: 230.0230, 120.2830

Submitted 23.01.2016

References

1.         Geng J. Structured-light 3D surface imaging: a tutorial // Adv. Opt. Photonics. 2011. V. 3. 2. P. 128–160.

2.         Karpinsky N., Zhang S. High-resolution, real-time 3D imaging with fringe analysis // J. Real-Time Image Pr. 2012. V. 7. 1. P. 55–66.

3.         Zhang S. Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques // Opt. Laser Eng. 2010. V. 48. 2. P. 149–158.

4.        Zhang Z.H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques // Opt. Laser Eng. 2012. V. 50. P. 1097–1106.

5.         Lei S.Y., Zhang S. Flexible 3-D shape measurement using projector defocusing // Opt. Lett. 2009. V. 34. 20. P. 3080–3082.

6.        Ayubi G.A., Ayubi J.A., Martino Di J.M., Ferrari J.A. Pulse-width modulation in defocused three-dimensional fringe projection // Opt. Lett. 2010. V. 35. 21. P. 3682–3684.

7.         Wang Y., Zhang S. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing // Opt. Lett. 2010. V. 35. 24. P. 4121–4123.

8.        Wang Y., Zhang S. Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing // Appl. Opt. 2012. V. 51. 7. P. 861–872.

9.        Zuo C., Chen Q., Feng S., Feng F., Gu G., Sui X. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing // Appl. Opt. 2012. V. 51. 19. P. 4477–4490.

10.       Lohry W., Zhang S. 3D shape measurement with 2D area modulated binary patterns // Opt. Laser Eng. 2012. V. 50. 7. P. 917–921.

11.       Wang Y.J., Zhang S. Three-dimensional shape measurement with binary dithered patterns // Appl. Opt. 2012. V. 51. 27. P. 6631–6636.

12.       Li B.W., Wang Y.J., Dai J.F., Lohry W., Zhang S. Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques // Opt. Laser Eng. 2014. V. 54. P. 236–246.

13.       Dai J.F., Zhang S. Phase-optimized dithering technique for high-quality 3D shape measurement // Opt. Laser Eng. 2013. V. 51. 6. P. 790–795.

14.       Huang P.S., Zhang S. Fast three-step phase-shifting algorithm // Appl. Opt. 2006. V. 45. 21. P. 5086–5091.

15.       Huntley J.M., Saldner H.O. Shape measurement by temporal phase unwrapping: Comparison of unwrapping algorithms // Meas. Sci. Technol. 1997. V. 8. 9. P. 986–992.

16.       Dai J.F., Li B.W., Zhang S. High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity // Opt. Laser Eng. 2014. V. 52. P. 195–200.

17.       Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity // IEEE T. Image Process. 2004. V. 13. 4. P. 600–612.

18.       Chen X.X., Qiu J., Liu G.J. Optimal test selection based on hybrid BPSO and GA // Chinese J. Sci. Instrum. 2009. V. 30. 8. P. 1674–1680.

19.       Roberge V., Tarbouchi M., Okou F. Collaborative parallel hybrid metaheuristics on graphics processing unit // Int. J. Comp. Intel. & Appl. 2015. V. 14. 1. P. 1–16.

 

 

项腠 蝈犟