Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru/87)
Аннотации (01.2017) : МНОГОПУТЕВАЯ МОДЕЛЬ РАСПРОСТРАНЕНИЯ И АНАЛИЗ ПРОПУСКНОЙ СПОСОБНОСТИ ТЕРАГЕРЦОВОГО КАНАЛА СВЯЗИ ВНУТРИ ПОМЕЩЕНИЙ

МНОГОПУТЕВАЯ МОДЕЛЬ РАСПРОСТРАНЕНИЯ И АНАЛИЗ ПРОПУСКНОЙ СПОСОБНОСТИ ТЕРАГЕРЦОВОГО КАНАЛА СВЯЗИ ВНУТРИ ПОМЕЩЕНИЙ

© 2017 г.     C. Liu; C. Wang;  J. C. Cao

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, China

Перспективы практического применения терагерцовых систем сверхскоростной беспроводной связи внутри помещений требуют разработки унифицированной и корректной модели канала связи. Предложена детерминистская многопутевая модель канала распространения сигнала, базирующаяся на теории рассеяния Кирхгофа и методике трассировки лучей, включающая модели распространения излучения по линии визирования, а также отраженные и рассеянные компоненты, и учитывающая особенности терагерцового излучения. Обсуждается новая методология, позволяющая на основе предложенной модели каналов распространения количественно оценивать работоспособность системы. Проведено сравнение численных расчетов с результатами экспериментальных измерений. Результаты демонстрируют достоверность предложенной модели, выявлена важность учета вклада путей распространения излучения вне пределов прямой видимости, в особенности рассеянных компонент. Полностью исследованы также пространственные характеристики терагерцового излучения для различных типов и схем управления антенной и формирования пучка. Наконец, детально проанализированы пропускная способность канала и эффекты расплывания и запаздывания. Продемонстрирован огромный потенциал – более 20 Гбит/с – сверхвысокоскоростной беспроводной связи внутри помещений в терагерцовом диапазоне.

Ключевые слова: многопутевое распространение, терагерцовая связь, трассировка лучей, теория рассеяния Кирхгофа, пропускная способность канала связи.

Поступила в редакцию 21.01.2016

 

MULTIPATH PROPAGATION CHANNEL MODELING AND CAPACITY ANALYSIS FOR TERAHERTZ INDOOR COMMUNICATIONS

© 2017    C. Liu, graduate student of Microelectronics and Solid-state electronics; C. Wang, Doctor of Microelectronics and Solid-state electronics; J. C. Cao, Doctor of Electronic Engineering

Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China

Е-mail: jccao@mail.sim.ac.cn

The eventual practical deployment of a terahertz indoor communication system for ultra-high-speed wireless links requires a unified and proper channel model. By considering the peculiarity of terahertz radiation, we develop a deterministic multipath propagation channel model based on Kirchhoff scattering theory and ray tracing techniques, which incorporates the propagation models for the line-of-sight, reflected and scattered paths. This work also provides a novel evaluation methodology to quantify the proposed channel model for system performance investigation. Numerical simulations are carried out with experimental measurements. The results demonstrate the validity of the proposed model and reveal the importance of the non-line-of-sight propagation paths, especially the scattered rays. Spatial characteristics of the terahertz propagation have also been fully investigated for the diversity antenna steering and beamforming schemes. Finally, channel capacity and delay spread effects are evaluated and analyzed in detail, and huge potential on ultra-high-speed wireless communications over 20 Gbps has been demonstrated in the terahertz band for indoor scenarios.

Keywords: multipath propagation, terahertz communications, ray tracing, Kirchhoff scattering theory, channel capacity.

OCIS codes: 080.1510, 290.5880, 060.4510

Submitted 21.01.2016

References

1.         Song H.J., Nagatsuma T. Present and future of terahertz communications // IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. № 1. P. 256–263.

2.         Federici J., Moeller L. Review of terahertz and subterahertz wireless communications // J. Appl. Phys. 2010. V. 107. № 11. P. 1–22.

3.         Piesiewicz R., Kleine-Ostmann T., Krumbholz N., Mittleman D., Koch M., Schoebei J., Kürner T. Short-range ultra-broadband terahertz communications: Concepts and perspectives // IEEE Antennas Propag. Mag. 2007. V. 49. № 6. P. 24–39.

4.        Jastrow C., Münter K., Piesiewicz R., Kürner T., Koch M., Kleine-Ostmann T. 300 GHz transmission system // Electron. Lett. 2008. V. 44. № 3. P. 213–215.

5.         Nagatsuma T., Song H.J., Fujimoto Y., Miyake K., Hirata A., Ajito K., Wakatsuki A., Furuta T., Kukutsu N., Kado Y. Giga-bit wireless link using 300–400 GHz bands // Int. Top. Meet. Microw. Photonics. 2009. P. 57–60.

6.        Song H.J., Ajito K., Muramoto Y., Wakatsuki A., Nagatsuma T., Kukutsu N. 24 Gbit/s data transmission in 300 GHz band for future terahertz communications // Electron. Lett. 2012. V. 48. № 15. P. 953–954.

7.         Song H.J., Kim J., Ajito K., Yaita M., Kukutsu N. Fully integrated ASK receiver MMIC for terahertz communications at 300 GHz // IEEE Trans. Terahertz Sci. Technol. 2013. V. 3. № 4. P. 445–452.

8.        Song H.J., Kim J., Ajito K., Kukutsu N., Yaita M. 50-Gb/s DIRECT сonversion QPSK modulator and demodulator MMICs for terahertz communications at 300 GHz // IEEE Trans. Microw. Theory Tech. 2014. V. 62. № 3. P. 600–609.

9.        Schneider T., Wiatrek A., Preussler S., Grigat M., Braun R.P. Link budget analysis for terahertz fixed wireless links // IEEE Trans. Terahertz Sci. Technol. 2012. V. 2. № 2. P. 250–256.

10.       Saleh A.M., Valenzuela R.A. A statistical model for indoor multipath propagation // IEEE J. Sel. Areas Commun. 1987. V. 5. № 2. P. 128–137.

11.       Spencer Q., Rice M., Jeffs B., Jensen M. A statistical model for angle of arrival in indoor multipath propagation // IEEE 47th Vehicular Technology Conf. 1997. V. 3. P. 1415–1419.

12.       Chong C.C., Tan C.M., Laurenson D.I., McLaughlin S., Beach M.A., Nix A.R. A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems // IEEE J. Sel. Areas Commun. 2003. V. 21. № 2. P. 139–150.

13.       Jornet J.M., Akyildiz I.F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band // IEEE Trans. Wirel. Commun. 2011. V. 10. № 10. P. 3211–3221.

14.       Piesiewicz R., Kleine-Ostmann T., Krumbholz N., Mittleman D., Koch M., Kurner T. Terahertz characterisation of building materials // Electron. Lett. 2005. V. 41. № 18. P. 1002–1004.

15.       Piesiewicz R., Jansen C., Wietzke S., Mittleman D., Koch M., Kürner T. Properties of building and plastic materials in the THz range // Int. J. Infrared Millimeter Waves. 2007. V. 28. № 5. P. 363–371.

16.       Piesiewicz R., Jansen C., Mittleman D., Kleine-Ostmann T., Koch M., Kürner T. Scattering analysis for the modeling of THz communication systems // IEEE Trans. Antennas Propag. 2007. V. 55. № 11. P. 3002–3009.

17.       Jansen C., Priebe S., Möller C., Jacob M., Dierke H., Koch M., Kürner T. Diffuse scattering from rough surfaces in THz communication channels // IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. № 2. P. 462–472.

18.       Choi Y., Choi J.W., Cioffi J.M. A geometric-statistic channel model for THz indoor communications // J. Infrared Millim. Terahertz Waves. 2013. V. 34. № 7. P. 456–467.

19.       Moldovan A., Ruder M.A., Akyildiz I.F., Gerstacker W.H. LOS and NLOS channel modeling for terahertz wireless communication with scattered rays // Globecom 2014 Work. Commun. High. Freq. Bands. 2014. P. 388–392.

20.      Han C., Bicen A.O., Akyildiz I.F. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band // IEEE Trans. Wirel. Commun. 2015. V. 14. № 5. P. 2402–2412.

21.       Priebe S., Jacob M., Jastrow C., Kleine-Ostmann T., Schrader T., Kürner T. A comparison of indoor channel measurements and ray tracing simulations at 300 GHz // 35th Int. Conf. Infrared, Millimeter, Terahertz Waves. 2010.

22.      Chen Z., Cao J.C. Channel characterization at 120 GHz for future indoor communication systems // Chinese Phys. B. 2013. V. 22. № 5. P. 059201.

23.      Priebe S., Jastrow C., Jacob M., Kleine-Ostmann T., Schrader T., Kürner T. Channel and propagation measurements at 300 GHz // IEEE Trans. Antennas Propag. 2011. V. 59. № 5. P. 1688–1698.

24.      Beckmann P., Spizzichino A. The scattering of electromagnetic waves from rough surfaces. Norwood, MA: Artech House, 1987. P. 80–98.

25.      Ragheb H., Hancock E.R. The modified Beckmann-Kirchhoff scattering theory for rough surface analysis // Pattern Recognit. 2007. V. 40. № 7. P. 2004–2020.

26.      Vernold C.L., Harvey J.E. A modified Beckmann-Kirchoff scattering theory for nonparaxial angles // Proc. SPIE. 1998. V. 3426. P. 51–56.

27.       Priebe S., Jacob M., Jansen C., Kürner T. Non-specular scattering modeling for THz propagation simulations // 5th European Conf. on Antennas and Propagation. 2011. P. 1–5.

28.      Lönnqvist A., Tamminen A., Mallat J., Räisänen A.V. Monostatic reflectivity measurement of radar absorbing materials at 310 GHz // IEEE Trans. Microw. Theory Tech. 2006. V. 54. № 9. P. 3486–3490.

29.      Sarkar T., Ji Z., Kim K. A survey of various propagation models for mobile communication // IEEE Antennas Propag. Mag. 2003. V. 45. № 3. P. 51–82.

30.      Goldsmith A. Wireless communication. N.Y.: Cambridge University Press, 2005. P. 82–90.

 

 

Полный текст