-
˻
1931
 
   
   
       
   
       



2008



2000-2010


444

2002-2007




!
-
-
-
-
-
-











01.12.2015 , (Web Science, Scopus) (. Vak.ed.gov.ru 16.03.2018)

!
« » «» II 2018 ., . II 2018 . (6600 .).
. (812) 315-05-48, -mail: beditor@soi.spb.ru

(01.2018) : . ALINGAN TEMPERATURE DEPENDENT INHOMOGENEOUS OPTICAL BEHAVIOR OF ALINGAN QUATERNARY ALLOY

. ALINGAN TEMPERATURE DEPENDENT INHOMOGENEOUS OPTICAL BEHAVIOR OF ALINGAN QUATERNARY ALLOY

 

© 2018    I. M. Mehedi*, Ph. D in Engineering; Md. S. Hasan**, M. Sc. in Engineering; Md. R. Islam**, Ph. D in Engineering; A. M. Dobaie*, Ph. D in Engineering

*   Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah-21589, Saudi Arabia

** Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh

E-mail: imehedi@kau.edu.sa, rafiq043@yahoo.com

Submitted 08.10.2017

The temperature dependent anomalous optical properties of AlInGaN quaternary alloy have been studied using Monty-Carlo simulation of phonon-assisted exciton hopping. The simulation results are well agreed with the experimental photoluminescence line widths and the peak energy positions while considering the additional inhomogeneous broadening with band potential fluctuation and the phonon induced radiative lifetime of exciton. The incorporation of bandgap shrinkage to the conventional Monte-Carlo simulation shows a good fit for the photoluminescence peak energy positions in AlInGaN quaternary alloy with the temperature induced experimental unusual behavior (redshift-blueshift-redshift). The W-shaped temperature dependent inhomogeneities are observed for the PL line widths. The temperature induced S-shaped photoluminescence band peaks and W-shaped line width have been attributed to the change of exciton dynamics due to the Indium aggregated potentials and the exciton localization effects. These results could be important to understand the realistic optical properties of AlInGaN quaternary alloy based electronic and optoelectronic devices.

Keywords: AlInGaN, exciton, Monte-Carlo simulation, photoluminescence, temperature.

OCIS codes: 160.0160, 160.4670, 160.4760, 250.0250, 250.5230

 

References

1.         Jang T., Nam O.H., Ha K.H., Lee S.N., Son J.K., Ryu H.Y., Kim K.S., Paek H.S., Sung Y.J., Kim H.G., Chae S.H. Recent achievements of AlInGaN based laser diodes in blue and green wavelength // Internat. Soc. Optics and Photonics. 2007. V. 6473. P. 64730X–64730X.

2.         Kwak J.S., Jang T., Choi K.K., Sung Y.J., Kim Y.H., Chae S., Lee S.N., Ha K.H., Nam O.H., and Park Y. Fabrication of AlInGaN-based blue-violet laser diode with low input power // Physica Status Solidi (A). 2004. V. 201. 12. P. 2649–2652.

3.         Lee S.N., Son J.K., Paek H.S., Sung, Y.J., Kim K.S., Kim H.K., Kim H., Sakong T., Park Y., Ha K.H., and Nam O.H. High-power AlInGaN-based violet laser diodes with InGaN optical confinement layers // Appl. Phys. Lett. 2008. V. 93. 9. P. 091109.

4.        Masui S., Matsuyama Y., Yanamoto T., Kozaki T., Nagahama S.I., and Mukai T. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy // Japan. J. Appl. Phys. 2003. V. 42. 11A. P. L1318.

5.         Wang T.C., Kuo H.C., Lee Z.H., Chuo C.C., Tsai M.Y., Tsai C.E., Lee T.D., Lu T.C., and Chi J. Quaternary AlInGaN multiple quantum well 368 nm light-emitting diode // J. Crystal Growth. 2006. V. 287. 2. P. 582–585.

6.        Hirayama H., Fujikawa S., Noguchi N., Norimatsu J., Takano T., Tsubaki K., and Kamata N. 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire // Physica Status Solidi (A). 2009. V. 206. 6. P. 1176–1182.

7.         Shur M.S. and Gaska R. Deep-ultraviolet light-emitting diodes // IEEE Trans. Electron Devices. 2010. V. 57. 1. P. 12–25.

8.        Lee H.C., Su Y.K., Lin J.C., Cheng Y.C., Li T.C., and Chang K.J. AlInGaN ultraviolet-C photodetectors with a Ni/Ir/Au multilayer metal contact // Solid-State Electronics. 2010. V. 54. 4. P. 488–491.

9.        Lim T., Aidam R., Waltereit P., Henkel T., Quay R., Lozar R., Maier T., Kirste L., and Ambacher O. GaN-based submicrometer HEMTs with lattice-matched InAlGaN barrier grown by MBE // IEEE Electron Device Lett. 2010. V. 31. 7. P. 671–673.

10.       Ketteniss N., Khoshroo L.R., Eickelkamp M., Heuken M., Kalisch H., Jansen R.H., and Vescan A. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates // Semiconductor Sci. and Technol. 2010. V. 25. 7. P. 075013.

11.       Khan M.A., Yang J.W., Simin G., Gaska R., Shur M.S., zur Loye H.C., Tamulaitis G., Zukauskas A., Smith D.J., Chandrasekhar D., and Bicknell-Tassius R. Lattice and energy band engineering in AlInGaN/GaN heterostructures // Appl. Phys. Lett. 2000. V. 76. 9. P. 1161–1163.

12.       Adivarahan V., Wu S., Chitnis A., Pachipulusu R., Mandavilli V., Shatalov M., Zhang J.P., Khan M.A., Tamulaitis G., Sereika A., and Yilmaz I. AlGaN single-quantum-well light-emitting diodes with emission at 285 nm // Appl. Phys. Lett. 2002. V. 81. 19. P. 3666–3668.

13.       Tamulaitis G., Kazlauskas K., Juršėnas S., Žukauskas A., Khan M.A., Yang J.W., Zhang J., Simin G., Shur M.S., and Gaska R. Optical bandgap formation in AlInGaN alloys // Appl. Phys. Lett. 2000. V. 77. 14. P. 2136–2138.

14.       Hirayama H., Kinoshita A., Yamabi T., Enomoto Y., Hirata A., Araki T., Nanishi Y., and Aoyagi Y. Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1–x–yN with In-segregation effect // Appl. Phys. Lett. 2002. V. 80. 2. P. 207–209.

15.       Chen C.H., Huang L.Y., Chen Y.F., Jiang H.X., and Lin J.Y. Mechanism of enhanced luminescence in InxAlyGa1–x–yN quaternary alloys // Appl. Phys. Lett. 2002. V. 80. 8. P. 1397–1399.

16.       Kazlauskas K., Tamulaitis G., Žukauskas A., Khan M.A., Yang J.W., Zhang J., Kuokstis E., Simin G., Shur M.S., and Gaska R. Exciton and carrier motion in quaternary AlInGaN // Appl. Phys. Lett. 2003. V. 82. 25. P. 4501–4503.

17.       Huang J.S., Dong X., Luo X.D., Liu X.L., Xu Z.Y., and Ge W.K. Localized exciton dynamics in AlInGaN alloy // Solid State Commun. 2003. V. 126. 8. P. 473–477.

18.       Kazlauskas K., Tamulaitis G., Žukauskas A., Khan M.A., Yang J.W., Zhang J., Simin G., Shur M.S., and Gaska R. Localization and hopping of excitons in quaternary AlInGaN // Physica Status Solidi (C). 2003. V. 1. P. 512–515.

19.       Skolnick M.S., Tapster P.R., Bass S.J., Pitt A.D., Apsley N., and Aldred S.P. Investigation of InGaAs-InP quantum wells by optical spectroscopy // Semiconductor Sci. and Technol. 1986. V. 1. 1. P. 29.

20.      Golub L.E., Ivanov S.V., Ivchenko E.L., Shubina T.V., Toropov A.A., Bergman J.P., Pozina G.R., Monemar B., and Willande, M. Low-temperature kinetics of localized excitons in quantum-well structures // Physica Status Solidi (B). 1998. V. 205. 1. P. 203–208.

21.       Kazlauskas K., Tamulaitis G., Žukauskas A., Khan M.A., Yang J.W., Zhang J., Simin G., Shur M.S., and Gaska R. Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping // Appl. Phys. Lett. 2003. V. 83. 18. P. 3722–3724.

22.      Fernández-Garrido S., Pereiro J., González-Posada F., Muñoz E., Calleja E., Redondo-Cubero A., and Gago R. Photoluminescence enhancement in quaternary III-nitrides alloys grown by molecular beam epitaxy with increasing Al content // J. Appl. Phys. 2008. V. 103. P. 046104.

23.      Hu S.Y., Lee Y.C., Weng Y.H., Ferguson I.T., and Feng Z.C. Characterization of temperature-dependent photoluminescence properties of InAlGaN quaternary alloys // J. Alloys and Compounds. 2014. V. 587. P. 153–157.

24.      Miller A. and Abrahams E. Impurity conduction at low concentrations // Phys. Rev. 1960. V. 120. 3. P. 745.

25.      Dal Don B., Kohary K., Tsitsishvili E., Kalt H., Baranovskii S.D., and Thomas P. Quantitative interpretation of the phonon-assisted redistribution processes of excitons in Zn1–xCdxSe quantum islands // Phys. Re. B. 2004. V. 69. 4. P. 045318.

26.      Kazlauskas K., Tamulaitis G., Pobedinskas P., Žukauskas A., Springis M. C.F., Cheng Y.C., and Yang C.C. Exciton hopping in InxGa 1–xN multiple quantum wells // Phys. Rev. B. 2005. V. 71. 8. P. 085306.

27.       Badcock T.J., Dawson P., Davies M.J., Kappers M.J., Massabuau F.P., Oehler F., Oliver R.A., and Humphreys C.J. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells // J. Appl. Physs. 2014. V. 115. 11. P. 113505.

28.      Berkowicz E., Gershoni D., Bahir G., Lakin E., Shilo D., Zolotoyabko E., Abare A.C., Denbaars S.P., and Coldren L.A. Measured and calculated radiative lifetime and optical absorption of InxGa1–xN/GaN quantum structures // Phys. Rev. B. 2000. V. 61. 16. P. 10994.

29.      Mohanta A., Wang S.F., Young T.F., Yeh P.H., Ling D.C., Lee M.E. and Jang, D.J. Observation of weak carrier localization in green emitting InGaN/GaN multi-quantum well structure // J. Appl. Phys. 2015. V. 117. 14. P. 144503.

30.      Cho Y.H., Gainer G.H., Fischer A.J., Song J.J., Keller S., Mishra U.K., and DenBaars S.P. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells // Appl. Phys. Lett. 1998. V. 73. 10. P. 13701372.

31.       Varshni Y.P. Temperature dependence of the energy gap in semiconductors // Physica. 1967. V. 34. 1. P. 149–154.

32.      Liu Y., Egawa T., Ishikawa, H., and Jimbo T. Growth and characterization of high-quality quaternary AlInGaN epilayers on sapphire // J. Crystal Growth. 2003. V. 259. 3. P. 245–251.