Íàó÷íî-òåõíè÷åñêèé
«ÎÏÒÈ×ÅÑÊÈÉ ÆÓÐÍÀË»
èçäàåòñÿ ñ 1931 ãîäà
 
   
Ðóññêèé âàðèàíò ñàéòà Àíãëèéñêèé âàðèàíò ñàéòà
   
       
   
       
Ñòàòüè ïîñëåäíåãî âûïóñêà

Ýëåêòðîííûå âåðñèè
âûïóñêîâ íà÷èíàÿ ñ 2008


Àëôàâèòíûé óêàçàòåëü
2000-2010 ãã


444
Àðõèâ îãëàâëåíèé
âûïóñêîâ 2002-2007 ãã


Ðåêâèçèòû è àäðåñà

Âíèìàíèþ àâòîðîâ è ðåöåíçåíòîâ!
- Ïîðÿäîê ïóáëèêàöèè
- Ïîðÿäîê ðåöåíçèðîâàíèÿ ñòàòåé
- Òèïîâîé äîãîâîð
- Ïðàâèëà îôîðìëåíèÿ
- Ïîëó÷åíèå àâòîðñêîãî âîçíàãðàæäåíèÿ
- Ðåäàêöèîííàÿ ýòèêà


Êîíòàêòû

Ïîäïèñêà

Êàðòà ñàéòà




Æóðíàë ñ 01.12.2015 äîïóùåí ÂÀÊ äëÿ ïóáëèêàöèè îñíîâíûõ ðåçóëüòàòîâ äèññåðòàöèé êàê èçäàíèå, âõîäÿùåå â ìåæäóíàðîäíûå ðåôåðàòèâíûå áàçû ñèñòåì öèòèðîâàíèÿ (Web Science, Scopus) (ñì. Vak.ed.gov.ru Ïåðå÷åíü æóðíàëîâ ÌÁÄ 16.03.2018ã)

Àííîòàöèè (03.2018) : ÑÏÎÑÎÁ ÀÂÒÎÌÀÒÈ×ÅÑÊÎÉ ÐÅÃÓËÈÐÎÂÊÈ ÑÌÅÙÅÍÈß 100 ÃÁ ÊÐÅÌÍÈÅÂÎÃÎ ÎÏÒÈ×ÅÑÊÎÃÎ ÌÎÄÓËßÒÎÐÀ, ÎÑÍÎÂÀÍÍÛÉ ÍÀ ÊÎÌÏÅÍÑÀÖÈÈ ÍÅËÈÍÅÉÍÛÕ ÝÔÔÅÊÒÎÂ È ÏÅÐÅÊÐÅÑÒÍÛÕ ÒÅÐÌÈ×ÅÑÊÈÕ ÏÎÌÅÕ

ÑÏÎÑÎÁ ÀÂÒÎÌÀÒÈ×ÅÑÊÎÉ ÐÅÃÓËÈÐÎÂÊÈ ÑÌÅÙÅÍÈß 100 ÃÁ ÊÐÅÌÍÈÅÂÎÃÎ ÎÏÒÈ×ÅÑÊÎÃÎ ÌÎÄÓËßÒÎÐÀ, ÎÑÍÎÂÀÍÍÛÉ ÍÀ ÊÎÌÏÅÍÑÀÖÈÈ ÍÅËÈÍÅÉÍÛÕ ÝÔÔÅÊÒÎÂ È ÏÅÐÅÊÐÅÑÒÍÛÕ ÒÅÐÌÈ×ÅÑÊÈÕ ÏÎÌÅÕ

 

© 2018    Lei Chen

Ïåðåêðåñòíûå òåðìè÷åñêèå ïîìåõè è íåëèíåéíûå ýôôåêòû ÿâëÿþòñÿ îñíîâíûìè ïàðàìåòðàìè êðåìíèåâûõ îïòè÷åñêèõ ìîäóëÿòîðîâ, îòëè÷àþùèõ ïîñëåäíèå îò ìîäóëÿòîðîâ íà îñíîâå íèîáàòà ëèòèÿ. Ïðåäëàãàåòñÿ íîâûé ñïîñîá àâòîìàòè÷åñêîé ðåãóëèðîâêè ñìåùåíèÿ äâóïîëÿðèçàöèîííîãî 100 Ãá êðåìíèåâîãî îïòè÷åñêîãî ìîäóëÿòîðà, êîìïåíñèðóþùèé âëèÿíèå íåëèíåéíûõ ýôôåêòîâ è ïåðåêðåñòíûõ òåðìè÷åñêèõ ïîìåõ. Ýêñïåðèìåíòàëüíî ïîêàçàíî, ÷òî ýòîò ìåòîä îáåñïå÷èâàåò ëèíåéíóþ ñâÿçü ìåæäó íàïðÿæåíèåì ñìåùåíèÿ è ôàçîé ñèãíàëà ìîäóëÿòîðà. Äîêàçàíà ðåàëèçóåìîñòü è ïðàêòè÷åñêàÿ ïðèìåíèìîñòü ìåòîäà.

Êëþ÷åâûå ñëîâà: êîãåðåíòíàÿ îïòè÷åñêàÿ ñâÿçü, êðåìíèåâûå îïòè÷åñêèå ìîäóëÿòîðû, àâòîìàòè÷åñêàÿ ðåãóëèðîâêà ñìåùåíèÿ, íåëèíåéíûå ýôôåêòû, ïåðåêðåñòíûå òåðìè÷åñêèå ïîìåõè.

 

 

100G Silicon optical modulator automatic bias control technology based on nonlinear effect compensation and thermal crosstalk effect compensation

© 2018    Lei Chen

Wuhan Research Institute of Posts and Telecommunications, Wuhan, 430074, China

E-mail: 604862240@gg.com

Submitted: 10.08.2017

Nonlinear effect and thermal crosstalk effect are two major characteristics of silicon optical modulator different from the LiNbO3 modulator. This paper proposes a new automatic bias control method of 100G double polarization quadrature phase shift keying silicon optical modulator, including automatic bias control technology of nonlinear effect compensation method and thermal crosstalk effect compensation method. The experimental results show that the method can establish the linear relationship between bias voltage and phase of silicon optical modulator. This new technology is proved be feasible and practical by experiments.

Key words: coherent optical communication, silicon optical modulator, automatic bias control, nonlinear effect, thermal crosstalk effect.

OCIS codes: 060.1660, 060.5060, 190.4420, 190.4870

 

References

1.         Miller D.A.B. Device requirements for optical interconnects to silicon chips // Proc. IEEE. 2009. V. 97, P. 1166–1185.

2.         Benner A.F., Ignatowski M., Kash J.A., Kuchta D.M., and Ritter M.B. Exploitation of optical interconnects in future server architectures // IBM J. Res. Dev. 2005. V. 49. P. 755–775.

3.         Li Z., Xiao X., Chu T., Yu Y., and Yu J. Highly efficient optical modulators in silicon for next-generation networks // Proc. SPIE. 2010. V. 11. ¹ 17. P. 120–131.

4.        Xu H., Xiao X., Li X., Hu Y., Li Z., Chu T., Yu Y., and Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions // Opt. Exp. 2011. V. 20. ¹ 14. P. 15093–15099.

5.         Chmielak B., Waldow M., Matheisen C., Ripperda C., Bolten J., Wahlbrink T., Nagel M., Merget F., and Kurz H. Pockels effect based fully integrated, strained silicon electro-optic modulator // Opt. Exp. 2011. V. 19. ¹ 18. P. 17212–17219.

6.        Shamsa M., Solomon P.M., Jenkins K.A., Balandin A.A., Haensch W. Investigation of thermal crosstalk between SOI FETs by the subthreshold sensing technique // IEEE Trans. electron devices ED. 2008. V. 55. ¹ 7. P. 1733–1740.

7.         Kawakami H., Yoshida E., and Miyamoto Y. Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation // J. Lightw. Technol. 2012. V. 30. ¹ 7. P. 270–273.

8.        Reed G.T., Gardes F.Y., Thomson D., and Lever L. Silicon photonics: optical modulators // Proc. SPIE. The Internat. Soc. Opt. Eng. 2010. P. 15–17.

9.        Salvestrini J.P., Guilbert L., Fontana M., Abarkan M., and Gille S. Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators // J. Lightw. Technol. 2012. V. 29. ¹ 10. P. 1522–1534.

10.       Kawakami H., Yoshida E., and Miyamoto Y. Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator // Electron. Lett. 2010. V. 46. ¹ 6. P. 430–431.

11.       Kawakami H., Yoshida E., and Miyamoto Y. Auto bias control technique for QPSK modulator with asymmetric bias dithering // in Proc. Optoelectron. Commun. Conf. 2010. P. 458–459.

12.       Sekine K., Hasegawa C., Kikuchi N., and Sasaki S. A novel bias control technique for MZ modulator with monitoring power of backward light for advanced modulation formats // in Proc. Opt. Fiber Commun. Conf. Anaheim, CA. 2007. V. 1. P. 451–453.

13.       Cho P.S., Khurgin J.B., and  Shpantzer I. Closed-loop bias control of optical quadrature modulator // IEEE Photon. Technol. Lett. 2006. V. 18. ¹ 21. P. 2209–2211.

14.       Peng W.R., Zhang B., Wu X., Feng K.M., Willner A.E., and Chi S. Compensation for I/Q imbalances and bias deviation of the Mach-Zehnder modulators in direct-detected optical OFDM systems // IEEE Photon. Technol. Lett. 2009. V. 21. ¹ 2. P. 103–105.

15.       Cho P.S., Nazarathy M. Bias control for optical OFDM transmitters // IEEE Photon. Technol. Lett. 2010. V. 22. ¹ 14. P. 1030–1032.

16.       Yoshida T., Sugihara T., Sawada K., Uto K., and Shimizu K. Automatic bias control for arbitrary optical signal generation by dual-parallel MZM // in Proc. 15th Optoelectron. Commun. Conf. 2011. P. 460–461.

17.       Yoshida T., Sugihara T., Uto K., Bessho H., Sawada K., Ishida K., Shimizu K., and Mizuochi T. A study on automatic bias control for arbitrary optical signal generation by dual-parallel Mach-Zehnder modulator // in Proc. 36th Eur. Conf. Opt. Commun. 2010. P. 1–3.

 

 

Ïîëíûé òåêñò