袜篦眍-蝈蹴梓羼觇
弦茸叛嗜 朴型浪
桤溧弪 1931 泐溧
 
   
畜耨觇 忄痂囗 襦轵 理汶栝耜栝 忄痂囗 襦轵
   
       
   
       
羊囹 镱耠邃礤泐 恹矬耜

蓦尻蝠铐睇 忮瘃梃
恹矬耜钼 磬麒磬 2008


离羿忤蝽 箨噻囹咫
2000-2010


444
鲤蹊 钽豚怆屙栝
恹矬耜钼 2002-2007


绣赈桤栩 噤疱襦

马桁囗棹 噔蝾痤 疱鲥礴屙蝾!
- 项漕 矬犭桕圉梃
- 项漕 疱鲥礴桊钼囗 耱囹彘
- 诣镱忸 漕泐忸
- 橡噔桦 铘铕祀屙
- 项塍麇龛 噔蝾瘃觐泐 忸珥嚆疣驿屙
- 绣溧牿桀眄 桕


暑眚嚓螓

项滹桉赅

枢痱 襦轵




企痦嚯 01.12.2015 漕矬 吕 潆 矬犭桕圉梃 铖眍忭 疱珞朦蜞蝾 滂耨屦蜞鲨 赅 桤溧龛, 怩钿 戾驿箜囵钿睇 疱翦疣蜩忭 徉琨 耔耱屐 鲨蜩痤忄龛 (Web Science, Scopus) (耢. Vak.ed.gov.ru 襄疱麇睃 骟痦嚯钼 塘 16.03.2018)

勇榔琅疼 衔南妊兹嗜 屠嘏梦 朴型浪!
项 蝈蹴梓羼觇 镳梓桧囔 «物蜩麇耜栝 骟痦嚯» 礤 镱镟 赅蜞腩 嚆屙蝰蜮 «蓄耧鬻囹» 磬 II 镱塍泐滂 2018 ., 黩 溴豚弪 礤忸珈铈眍 镱滹桉牦 磬 礤泐 磬 镱黩. 橡邃豚汔屐 铘铕扈螯 镱滹桉牦 磬 II 镱塍泐滂 2018 疱溧牿梃 骟痦嚯 箐钺睇 锣 耧铖钺铎. 羊铊祛耱 镱滹桉觇 磬 镱塍泐滂 耦躔囗弪 (6600 痼.).
砚玎螯 磬扈 祛骓 镱 . (812) 315-05-48, -mail: beditor@soi.spb.ru

理眍蜞鲨 (03.2018) : 严窝瘟 缆椅汤胰着咽紊 信糜巳形率 烟刨磐冗 100 昧 市盘腿怕蚊 蜗胰着咽蚊 涛挠诉椅欣, 窝臀吕屯凵 屠 饰滔磐牙秩 团巳团赏壅 菰耘室温 吓信市叛彝壅 遗刑茸叛嗜 衔膛

严窝瘟 缆椅汤胰着咽紊 信糜巳形率 烟刨磐冗 100 昧 市盘腿怕蚊 蜗胰着咽蚊 涛挠诉椅欣, 窝臀吕屯凵 屠 饰滔磐牙秩 团巳团赏壅 菰耘室温 吓信市叛彝壅 遗刑茸叛嗜 衔膛

 

© 2018    Lei Chen

襄疱牮羼蝽 蝈痨梓羼觇 镱戾蹊 礤腓礤轫 翦牝 怆 铖眍忭 镟疣戾蝠囔 牮屐龛邂 铒蜩麇耜桴 祛潴蝾痤, 铗腓鬣桴 镱耠邃龛 铗 祛潴蝾痤 磬 铖眍忮 龛钺囹 腓蜩. 橡邃豚汔弪 眍恹 耧铖钺 噔蝾爨蜩麇耜铋 疱泱腓痤怅 耢妁屙 溻箫铍痂玎鲨铐眍泐 100 冕 牮屐龛邂钽 铒蜩麇耜钽 祛潴蝾疣, 觐祜屙耔痼栝 怆龛 礤腓礤轫 翦牝钼 镥疱牮羼蝽 蝈痨梓羼觇 镱戾. 蓐耧屦桁屙蜞朦眍 镱赅玎眍, 黩 铗 戾蝾 钺羼镥麒忄弪 腓礤轫簋 疋琰 戾驿 磬镳驽龛屐 耢妁屙 羿珙 耔沩嚯 祛潴蝾疣. 念赅玎磬 疱嚯桤箦祛耱 镳嚓蜩麇耜 镳桁屙桁铖螯 戾蝾溧.

孰邂 耠钼: 觐沐疱眚磬 铒蜩麇耜 疋琰, 牮屐龛邂 铒蜩麇耜桢 祛潴蝾瘥, 噔蝾爨蜩麇耜 疱泱腓痤怅 耢妁屙, 礤腓礤轫 翦牝, 镥疱牮羼蝽 蝈痨梓羼觇 镱戾蹊.

 

 

100G Silicon optical modulator automatic bias control technology based on nonlinear effect compensation and thermal crosstalk effect compensation

© 2018    Lei Chen

Wuhan Research Institute of Posts and Telecommunications, Wuhan, 430074, China

E-mail: 604862240@gg.com

Submitted: 10.08.2017

Nonlinear effect and thermal crosstalk effect are two major characteristics of silicon optical modulator different from the LiNbO3 modulator. This paper proposes a new automatic bias control method of 100G double polarization quadrature phase shift keying silicon optical modulator, including automatic bias control technology of nonlinear effect compensation method and thermal crosstalk effect compensation method. The experimental results show that the method can establish the linear relationship between bias voltage and phase of silicon optical modulator. This new technology is proved be feasible and practical by experiments.

Key words: coherent optical communication, silicon optical modulator, automatic bias control, nonlinear effect, thermal crosstalk effect.

OCIS codes: 060.1660, 060.5060, 190.4420, 190.4870

 

References

1.         Miller D.A.B. Device requirements for optical interconnects to silicon chips // Proc. IEEE. 2009. V. 97, P. 1166–1185.

2.         Benner A.F., Ignatowski M., Kash J.A., Kuchta D.M., and Ritter M.B. Exploitation of optical interconnects in future server architectures // IBM J. Res. Dev. 2005. V. 49. P. 755–775.

3.         Li Z., Xiao X., Chu T., Yu Y., and Yu J. Highly efficient optical modulators in silicon for next-generation networks // Proc. SPIE. 2010. V. 11. 17. P. 120–131.

4.        Xu H., Xiao X., Li X., Hu Y., Li Z., Chu T., Yu Y., and Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions // Opt. Exp. 2011. V. 20. 14. P. 15093–15099.

5.         Chmielak B., Waldow M., Matheisen C., Ripperda C., Bolten J., Wahlbrink T., Nagel M., Merget F., and Kurz H. Pockels effect based fully integrated, strained silicon electro-optic modulator // Opt. Exp. 2011. V. 19. 18. P. 17212–17219.

6.        Shamsa M., Solomon P.M., Jenkins K.A., Balandin A.A., Haensch W. Investigation of thermal crosstalk between SOI FETs by the subthreshold sensing technique // IEEE Trans. electron devices ED. 2008. V. 55. 7. P. 1733–1740.

7.         Kawakami H., Yoshida E., and Miyamoto Y. Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation // J. Lightw. Technol. 2012. V. 30. 7. P. 270–273.

8.        Reed G.T., Gardes F.Y., Thomson D., and Lever L. Silicon photonics: optical modulators // Proc. SPIE. The Internat. Soc. Opt. Eng. 2010. P. 15–17.

9.        Salvestrini J.P., Guilbert L., Fontana M., Abarkan M., and Gille S. Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators // J. Lightw. Technol. 2012. V. 29. 10. P. 1522–1534.

10.       Kawakami H., Yoshida E., and Miyamoto Y. Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator // Electron. Lett. 2010. V. 46. 6. P. 430–431.

11.       Kawakami H., Yoshida E., and Miyamoto Y. Auto bias control technique for QPSK modulator with asymmetric bias dithering // in Proc. Optoelectron. Commun. Conf. 2010. P. 458–459.

12.       Sekine K., Hasegawa C., Kikuchi N., and Sasaki S. A novel bias control technique for MZ modulator with monitoring power of backward light for advanced modulation formats // in Proc. Opt. Fiber Commun. Conf. Anaheim, CA. 2007. V. 1. P. 451–453.

13.       Cho P.S., Khurgin J.B., and  Shpantzer I. Closed-loop bias control of optical quadrature modulator // IEEE Photon. Technol. Lett. 2006. V. 18. 21. P. 2209–2211.

14.       Peng W.R., Zhang B., Wu X., Feng K.M., Willner A.E., and Chi S. Compensation for I/Q imbalances and bias deviation of the Mach-Zehnder modulators in direct-detected optical OFDM systems // IEEE Photon. Technol. Lett. 2009. V. 21. 2. P. 103–105.

15.       Cho P.S., Nazarathy M. Bias control for optical OFDM transmitters // IEEE Photon. Technol. Lett. 2010. V. 22. 14. P. 1030–1032.

16.       Yoshida T., Sugihara T., Sawada K., Uto K., and Shimizu K. Automatic bias control for arbitrary optical signal generation by dual-parallel MZM // in Proc. 15th Optoelectron. Commun. Conf. 2011. P. 460–461.

17.       Yoshida T., Sugihara T., Uto K., Bessho H., Sawada K., Ishida K., Shimizu K., and Mizuochi T. A study on automatic bias control for arbitrary optical signal generation by dual-parallel Mach-Zehnder modulator // in Proc. 36th Eur. Conf. Opt. Commun. 2010. P. 1–3.

 

 

项腠 蝈犟