Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

УВАЖАЕМЫЕ ПОДПИСЧИКИ НАШЕГО ЖУРНАЛА!
По техническим причинам «Оптический журнал» не попал в каталог агентства «Роспечать» на II полугодие 2018 г., что делает невозможной подписку на него на почте. Предлагаем оформить подписку на II полугодие 2018 в редакции журнала удобным Вам способом. Стоимость подписки на полугодие сохраняется (6600 руб.).
На первое полугодие 2019 и далее подписка будет проводится в ранее существовавшем порядке через "Роспечать", "УралПресс" и другие агенства печати.

Связаться с нами можно по т. (812) 315-05-48, Е-mail: beditor@soi.spb.ru

Аннотации (09.2018) : ОПРЕДЕЛЕНИЕ ФИЗИЧЕСКОЙ НАГРУЗКИ С ИСПОЛЬЗОВАНИЕМ МИМИЧЕСКОЙ АКТИВНОСТИ

ОПРЕДЕЛЕНИЕ ФИЗИЧЕСКОЙ НАГРУЗКИ С ИСПОЛЬЗОВАНИЕМ МИМИЧЕСКОЙ АКТИВНОСТИ

 

© 2018    Xuqiang Li, Kan Hong, Guodong Liu

Исследована возможность использования мультиспектральных изображений лиц для определения степени физической нагрузки человека. Разработанный алгоритм обработки мультиспектральных изображений был применен для анализа мимической активности лиц добровольцев без информирования последних. Алгоритмическая модель проходила верификацию для классификации исходных показателей и степени физических нагрузок. При применении алгоритма наилучшие результаты составляли 75%, что позволяет продолжить работу по его дальнейшему внедрению. Результаты опытов продемонстрировали потенциал использования мультиспектральных изображений для неинвазивного определения степени физических нагрузок человека.

Ключевые слова: мультиспектральное изображение, физические нагрузки

 

Detection of physical stress using facial muscle activity

© 2018    Xuqiang Li, Kan Hong*, Guodong Liu*

Optoelectronics and Communication Engineering Key Laboratory, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, China

* E-mail: 16451946@qq.com

Submitted 15.03.2018

This study investigated the potential of using multispectral imaging for detecting physical stress on human being. Participants were recruited to obtain multispectral images and, a proposed facial muscle activity detection algorithm was established without background information. The algorithm model was verified with respect to physical stress ground truth, in order to classify the baseline and physical stress status. The algorithm achieved better results in the experiment with an accuracy rate of 75%, which will provide a foundation for future industrialization. Experimental results demonstrated that multispectral imaging, as a non-invasive method, has the potential to identify physical stress on humans.

Keywords: multispectral imaging, physical stress.

OCIS code: 100.0100

DOI:10.17586/1023-5086-2018-85-09-49-58

 

Reference

1.         Lederbogen F., Baranyai R., Gilles M. Effect of mental and physical stress on platelet activation markers in depressed patients and healthy subjects: a pilot study // Psychiatry Research. 2004. V. 127. № 1. P. 55–64.

2.         Otto M. Physical stress and bacterial colonization // Fems Microbiology Reviews. 2014. V. 38. № 6. P. 1140–1250.

3.         Tripathi R.K. Effect of Withania somnifera on physical and cardiovascular performance induced by physical stress in healthy human volunteers // International J. Basic &​ Clinical Pharmacology. 2016. V. 1. № 1. P. 2279–2289.

4.        Amita M.P. Comparison of anthropometric parameters and blood pressure changes in response to physical stress test in normotensive subjects with or without family history of hypertension // J. Physiol. Pharmacol. 2016. V. 60. № 2. P. 208–212.

5.         Ktedalen O. The influence of prolonged physical stress on gastric juice components in healthy man // Scandinavian J. Gastroenterology. 1988. V. 23. № 9. P. 1132–1136.

6.        Wallen N.H. Effects of mental and physical stress on platelet function in patients with stable angina pectoris and healthy controls // European Heart J. 1997. V. 18. № 1. P. 807–815.

7.         Michael T. Impact of mental and physical stress on blood pressure and pulse pressure under normobaric versus hypoxic conditions // Plos One. 2014. V. 9. № 5. P. e89005.

8.        Irfan M. Physical stress may result in growth suppression and pubertal delay in working boys // Iranian J. Medical Hypotheses & Ideas. 2011. V. 5. № 1. P. 35–39.

9.        Gillan W. Correlations among stress, physical activity and nutrition: School employee health behavior // The ICHPER-SD J. Research in Health. 2013. № 8. P. 55–60.

10.       Mizuno M. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress // Hypertension. 2013. V. 61. № 1. P. 180. 

11.       Taylor A.H. Stress, fatigue, health, and risk of road traffic accidents among professional drivers: The contribution of physical inactivity // Annual Review of Public Health. 2006. V. 27. № 1. P. 371. 

12.       Natrual Tech: The Adrenal Stress Profile. http: // www.natratech.com /Products / saliva_test.htm. Accessed 7 March 2015.

13.       Read G.F. Immunoassays of steroids in saliva // Steroid Biochem. 1985. V. 22. № 33. P. 437–438.

14.       Nardelli M. Recognizing emotions induced by affective sounds through heart rate variability // IEEE Trans. Affective Computing. 2015. V. 6. № 4. P. 385–394.

15.       Cook A.J. Open platform, eight-channel, portable bio-potential and activity data logger for wearable medical device development // Electron. Lett. 2015. V. 51. № 21. P. 1641–1643.

16.       Kozel F.A. Detecting deception using functional agnetic resonance imaging // Biol. Psychiatry. 2005. V. 58. P. 605–613.

17.       Bhatt S. Lying about facial recognition: An fMRI study // Brain Cognit. 2009. V. 69. P. 382–390.

18.       Ebisch S.J. Mother and child in synchrony: Thermal facial imprints of autonomic contagion // Thermology International. 2012. V. 22. P. 121–129.

19.       Ioannou S. The autonomic signature of guilt in children: A thermal infrared imaging study // Plos One. 2013. V. 8. P. 1–11.

20.      Puri C. Stress-cam: Non-contact measurement of user’s emotional states through thermal imaging // Proc. 2005 ACM Conf. Human Factorsin Computing Systems. 2005. V. 2. P. 1725–1728.

21.       Garbey M. Contact-free measurement of cardiac pulse base on the analyses of thermal imagery // IEEE Trans. Biomedical Engineering. 2007. V. 54. P. 1418–1426.

22.      HaoYu W. Eulerian video magnification for revealing subtle changes in the world // ACM Trans. 2012. V. 31. № 4. P. 1–8.

23.      Pavlidis I. Interacting with human physiology // Computer Vision & Image Understanding. 2007. V. 108. P. 150–170.

24.      Pavlidis I. Human behavior: Seeing through the face of deception // Nature. 2002. V. 415. № 6867. P. 35–36.

25.      Pavlidis I. Continuous physiological monitoring // Proc. 25th Annual Intern. Conf. IEEEEMBS Cancun. 2003. P. 17–21.

26.      Pavlidis I. Thermal image analysis for anxiety detection // Proc. 2001 IEEE Intern. Conf. Image Proc. 2001. V. 2. P. 315–318.

27.       Cross C.B. Thermal imaging to detect physiological indicators of stress in humans // SPIE Defense Security & Sensing. 2013. V. 3. № 1. P. 8705–8711.

28.      Boethig D. Physical stress testing of bovine jugular veins using magnetic resonance imaging, echocardiography and electrical velocimetry // Interactive Cardiovascular & Thoracic Surgery. 2010. V. 10. № 6. P. 877.

29.      Slobounov S.M. Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study // Neuroimage. 2011. V. 55. № 4. P. 1716.

30.      Ji Q. Real-time nonintrusive monitoring and prediction of driver fatigue // IEEE Trans. Vehicular Technol. 2004. V. 53. № 4. P. 1052–1068.

31.       Tayibnapis I.R. A novel driver fatigue monitoring using optical imaging of face on safe driving system // Intern. Conf. Control. 2017. V. 1. № 1. P. 115–120.

32.      Yangon Q. A novel real-time face tracking algorithm for detection of driver fatigue // Third Intern. Symp. Intelligent Information Technology & Security Informatics. 2010. V. 1. P. 671–676.

33.      Hong K. Classification of the emotional stress and physical stress using signal magnification and canonical correlation analysis // Pattern Recognition. 2018. V. 77. № 1. P. 140–149.

34.      Alioua N. Driver’s fatigue detection based on yawning extraction // Intern. J. Vehicular Technology. 2014. V. 1. P. 1–7.

35.      Sacco M. Driver fatigue monitoring system using support vector machines // 2012 Fifth Intern. Symp. Communications Control and Signal Proc. 2012. P. 1–5.

36.      Liu A. A practical driver fatigue detection algorithm based on eye state // Proc. Asia Pacific Conf. Postgraduate Research in Microelectronics and Electronics. Shanghai, China. 2010.

37.       Liu D. Drowsiness detection based on eyelid movement // Proc. 2nd Intern. Workshop on Education Technology and Computer Science. Wuhan, China. 2010.

38.      Jimenez-Pinto J. Face salient points and eyes tracking for robust drowsiness detection // Robotica. 2012. V. 30. № 5. P. 105–115.

39.      Irani R. Contactless measurement of muscles fatigue by tracking facial feature points in a video // IEEE Intern. Conf. Image Proc. 2014. V. 12. № 1. P. 127–135.

40.      Mohammad A. Facial video-based detection of physical fatigue for maximal muscle activity // IET Computer Vision. 2016. V. 10. № 4. P. 323–329.  

41.       Hong K. Real time stress assessment using thermal imaging // The Visual Computer. 2015. V. 10. P. 1–9.

42.      Hong K. Classification of emotional stress and physical stress using facial image feature // JOT. 2016. V. 83. № 8. P. 1–10.

43.      El Masry G. Quality classification of cooked, sliced turkey hams using NIR hyperspectral imaging system // J. Food Eng. 2011. V. 103. P. 333–344.

44.      Xie C. Study of detection of SPAD value in tomato leaves stressed by grey mold based on hyperspectral technique // Spectroscopy & Spectral Analysis. 2012. V. 32. P. 3324–3328.

45.      Noora N. Detecting field cancerization using a hyperspectral imaging system laser surg med // Scientific Reports. 2013. V. 45. P. 410–417.

46.      Richard M. Consistency of measurements of wavelength position from hyperspectral imagery: Use of the ferric iron crystal field absorption at similar to 900 nm as an indicator of mineralogy // IEEE T. Geosci. Remote. 2014. V. 52. P. 2843–2857.

47.      Michael D. New ways to extract archaeological information from hyperspectral pixels // J. Archaeol. Sci. 2014. V. 52. P. 84–96.

48.      Chuanqi Xie. Detection of early blight and lateb light diseases on tomato leaves using hyperspectral imaging // Scientific Reports. 2015. V. 5. P. 16564. 

49.      Chen T. Assessment of tissue blood perfusion in-vitro using hyperspectral and thermal imaging techniques // 5th Intern. Conf. Bioinformatics and Biomedical Eng. 2011. V. 1. P. 1022–1030.

50.      Chen T., Yuen P., Hong K. Remote sensing of stress using electro-optics imaging technique // Proc. SPIE. 2009. V. 7486. P. 601–612.

51.       Yuen P., Chen T., Hong K. Remote detection of stress using hyperspectral imaging technique // Proc. 3rd Intern. Conf. Crime Detection and Prevention ICDP. 2009. V. 1. 12. P. 500–512.

52.      Veronika E. Exploring the use of thermal infrared imaging in human stress research // J. Plos One. 2014. V. 9. № 3. P. 125–136.

53.      Muller M. A multivariate approach to correlation analysis based on random matrix theory // Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications B. / Eds. by Schelter J., Timmer A., and Bonhage S. N.Y., USA: Wiley, 2008. P. 209–226.

54.      Wanhui W. Emotion recognition based on multi-variant correlation of physiological signals // IEEE Trans. Affective Computing. 2014. V. 5. № 2. P. 40–60.

55.      Edelman A. Eigenvalues and condition numbers of random matrices // SIAM J. Matrix Anal. Appl. 1988. V. 9. № 4. P. 543–560.

 

 

Полный текст