Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

УВАЖАЕМЫЕ ПОДПИСЧИКИ НАШЕГО ЖУРНАЛА!
По техническим причинам «Оптический журнал» не попал в каталог агентства «Роспечать» на II полугодие 2018 г., что делает невозможной подписку на него на почте. Предлагаем оформить подписку на II полугодие 2018 в редакции журнала удобным Вам способом. Стоимость подписки на полугодие сохраняется (6600 руб.).
На первое полугодие 2019 и далее подписка будет проводится в ранее существовавшем порядке через "Роспечать", "УралПресс" и другие агенства печати.

Связаться с нами можно по т. (812) 315-05-48, Е-mail: beditor@soi.spb.ru

Аннотации (12.2018) : SIDE POLISHED GRADED INDEX MULTIMODE FIBER BASED REFRACTIVE INDEX SENSOR FOR BIOLOGY MEASUREMENT

SIDE POLISHED GRADED INDEX MULTIMODE FIBER BASED REFRACTIVE INDEX SENSOR FOR BIOLOGY MEASUREMENT

© 2018 г.       Dan Gao*, **; Hao Lei**, ***; Jun Zhang**, ***; Jianhui Yu**, ***; Wenguo Zhu**, ***; Huihui Lu**, ***; Heyuan Guan**, ***; Jieyuan Tang**, ***; Mengyuan Xie**, ***; Yunhan Luo**, ***; Jiangli Dong**, ***; Norhaha Arsad****; Zhe Chen**, ***; Fan Wang*

*       School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China

**     Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China

***   Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China

**** Centre for Advanced Electronics & Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Malaysia

E-mail: 472969511@qq.com

Поступила в редакцию 05.06.2018

DOI:10.17586/1023-5086-2018-85-12-49-59

A side polished graded index multimode fiber based refractive index sensor is proposed for use in biology measurement. The side polished graded index multimode fiber is fabricated using the wheel polishing method, that is a part of the cladding and core of a graded index multimode fiber are removed to develop a leaking ‘window’ called side polished region. The optical power loss through this structure is sensitive to the refractive index of the analyte liquid which covering the leaking ‘window’. A greatly linear correlation between the optical power loss and refractive index has been achieved. Additionally, we also investigated the influence of each structure parameter on the sensitivity and linearity. From simulation and experiments results obtained, the fiber core of 50 m and R of 10 m are considered as the best choice of fiber structure with its sensitivity is 40.92 dB/RIU in the refractive index range of 1.300–1.450. A bio-solution of fetal bovine serum can be easily detected with this structure whose concentration gradient is two percent. It provides a simple and quick method to detect refractive indices in biology measurement from 1.300 to 1.450. .

Keywords: side polished graded index multimode fiber, refractive index sensor, biological measurement, optical power loss.

OCIS codes: 060.0060

 

Датчик для измерения показателя преломления на основе градиентного многомодового волокна с полированной боковой поверхностью для биологических применений

© 2018 г.       Dan Gao, Hao Lei, Jun Zhang, Jianhui Yu, Wenguo Zhu, Huihui Lu, Heyuan Guan, Jieyuan Tang, Mengyuan Xie, Yunhan Luo, Jiangli Dong, Norhaha Arsad, Zhe Chen, Fan Wang

Предложен датчик на основе градиентного многомодового волокна с полированной боковой поверхностью для измерения показателя преломления в биологических исследованиях. Часть боковой поверхности волокна, включая оболочку и часть сердцевины, механически сполировывалась так, чтобы организовать окно утечки излучения. Потери мощности из волокна при этом чувствительны к величине показателя преломления жидкостей, определяемых при анализе и контактирующих с окном утечки. Обнаружена корреляция высокой степени линейности между потерями и величиной показателя преломления аналита. Исследовано влияние каждого из параметров изготовленной структуры на чувствительность и линейность  при проведении измерений. Моделирование и эксперимент показали, что наилучшие результаты демонстрирует волокно с диаметром сердцевины 50 мкм и расстоянием от её оси до площадки утечки 10 мкм, обеспечивая чувствительность 40,92 дБ на единицу изменения показателя преломления в диапазоне 1,3001,450 мкм. С лёгкостью обнаруживались двухпроцентные изменения показателя преломления в коровьей внутриутробной сыворотке. Обеспечивается простое и быстрое определение показателей преломления в области 1,31,45 мкм при проведении биологических исследований. .

Ключевые слова: многомодовое градиентное оптическое волокно, полированная боковая поверхность, уходящие волны, датчик на основе градиентного волокна, биологические измерения.

 

References

1.         Liu P.Y., Chin L.K., Ser W., Chen H.F., Hsieh C.M., Lee C.H., Sung K.B, Ayi T.C., Yap P.H., Liedberg B., Bourouina T., Leprince-Wang Y. Cell refractive index for cell biology and disease diagnosis: past, present and future // Lab. Chip. 2016. V. 16. № 4. P. 634–644.

2.         Claudecir R. Biazoli, Susana Silva, Marcos A.R. Franco, Orlando Frazäo, Cristiano M.B. Cordeiro. Multimode interference tapered fiber refractive index sensors // Appl. Opt. 2012. V. 51. № 24. P. 5941–5945.

3.         Orlando Frazäo, Susana O. Silva, Jaime Viegas, Luís A. Ferreira, Francisco M. Araújo, José L. Santos. Optical fiber refractometry based on multimode interference // Appl. Opt. 2011. V. 50. № 25. P. E184–E188.

4.         Wenjun Zhou, Yan Zhou, Xxinyong Dong, Li-Yang Shao, Jia Cheng, Jacques Albert. Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer // IEEE Photonics J. 2012. V. 4. № 3. P. 1051–1057.

5.         Jin-Fei Ding, Zhang A.P., Li-Yang Shao, Jin-Hua Yan, Sailing He. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor// IEEE Photonic Techl. 2005. V. 17. № 6. P. 1247–1249.

6.         Qiu-Shun Li, Xu-Lin Zhang, Dong Xiang, Lan Zheng, Yan Yang, Jun-Hui Yang, Dong Feng, Wen-Fei Dong. An ultrasensitive long-perios fiber grating-based refractive index sensor with long wavelengths // Sensors. 2016. V. 16. № 12. P. 2205.

7.         Amit Singh. Various characteristics of long-period fiber grating-based refractive index sensor // Optik. 2015. V. 126. № 24. P. 5439–5543.

8.        mietana M., Kova M., Miulic P., Bock W.J. Measurements of reactive ion etching process effect using long-period fiber gratings // Opt. Express. 2014. V. 22. № 5. P. 5986–5994.

9.         mietana M., Kova M., Miulic P., Bock W.J. Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition // Opt. Express. 2016. V. 24. № 11. P. 11897–11904.

10.       Jaw-Luen Tang, Jien-Neng Wang. Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles // Sensors. 2008. V. 8. № 1. P. 171–184.

11.       Coradin F.K., Possetti G.R.C., Kamikawachi R.C., Muller M., Fabris J.L. Etched fiber bragg gratings sensors for water-ethanol mixtures: a comparative study // J. microw. Optoelectron. Electromagn. Appl. 2010. V. 9. № 2. P. 131–143.

12.       Yang Ran, Long Jin, Li-Peng Sun, Jie Li, Bai-Ou Guan. Temperature compensated refractive-index sensing using a single Bragg grating in an abrupt fiber taper // IEEE Photonics J. 2013. V. 5. № 2. P. 7100208.

13.       Tsigaridas G., Polyzos D., Loannou A., Fakis M., Persephonis P. Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings // SENSOR ACTUAT A-PHYS. 2014. V. 209. № 9. P. 9–15.

14.       Wu Q., Semenova Y., Yan B., Ma Y., Wang P., Yu C., Farrell G. Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure // Opt. Lett. 2011. V. 36. № 12. P. 2197–2199.

15.       Zhou K., Yan Z., Zhang L., Bennion I. Refractometer based on fiber Bragg grating Fabry–Perot cavity embedded with a narrow microchannel // Opt. Express. 2011. V. 19. № 12. P. 11769–11779.

16.       De-Wen Duan, Yun-Jiang Rao, Lai-Cai Xu, Tao Zhu, Di Wu, Jun Yao. In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity // SENSOR ACTUAT B-CHEM. 2011. V. 160. № 1. P. 1198–1202.

17.       Lu P., Men L., Sooley K., Chen Q. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature // Appl. Phys. Lett. 2009. V. 94. № 13. P. 131110–131110-3.

18.       Xiao-Yan Sun, Dong-Kai Chu, Xin-Ran Dong, Chu-Zhou, Hai-Tao Li, Luo-Zhi, You-Wang Hu, Jian-Ying Zhou, Cong-Wang, Ji-An Duan. Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching // Optics & Laser Technology. 2016. V. 77. № 11. P. 11–15.

19.       Wang J.N., Tang J.L. Photonic crystal fiber Mach–Zehnder interferometer for refractive index sensing // Sensors. 2012. V. 12. № 3. P. 2983–2995.

20.      Wang P., Semenova Y., Wu Q., Farrell G., Ti Y., Zheng J. Macrobending single-mode fiber-based refractometer // Appl. Opt. 2009. V. 48. № 31. P. 6044-9.

21.       Mishra S.K., Varshney C., Gupta B.D. Sensitivity enhancement of a surface plasmon resonance based fiber optic refractive index sensor utilizing an additional layer of zinc oxides // SENSOR ACTUAT A-PHYS. 2013. V. 193. № 5. P. 136–140.

22.      Zynio S.A., Samoylov A.V., Surovtseva E.R, Mirsky V.M., Shirshov Y.M. Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance // Sensors. 2002. V. 2. № 2. P. 62–70.

23.      Jieyuan Tang, Junjie Zhou, Junwen Guan, Shun Long, Jianhui Yu, Heyuan Guan, Huihui Lu, Yunhan Luo, Jun Zhang, Zhe Chen. Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing // IEEE J. Sel. Top. Quan. 2016. V. 23. № 2. P. 5600708.

24.      Alvare-Herrero A., Guerrero H., Levy D. High-sensitivity sensor of low relative humidity based on overlay on sidepolished fiber // IEEE Sens. J. 2004. V. 4. № 1. P. 52–56.

25.      Yan Lu, Wang Guan-jun, An Yong-Quan, Wang Zhi-bin, Gui Zhi-guo. Research on transmission character of side polished fiber // Journal of Measurement Science Instrumentation. 2016. V. 7. № 2. P. 145–148.

26.      Zhong Y., Li S., Tang L., Chen Z., Yu J. High-sensitivity optical sensing of temperature based on side-polished fiber with polymer nanoporous cladding // Opt. Eng. 2016. V. 55. № 10. P. 106123.

27.       Yaoming Huang, Wenguo Zhu, Zhibin Li, Gguanglei Chen, Liheng Chen, Junjie Zhou, Hai Lin, Junwen Guan, Wwenxiao Fang, Xin Liu, Huazhou Dong, Jieyuan Tang, Heyuan Guan, Huihui Lu, Yi Xiao, Jun Zhang, Hongcheng Wang, Zhe Chen, Jianhui Yu. High-performance fiber-optic humidity sensor based on a side-polished fiber wavelength selectively coupled with grapheme oxide film // Sensor. Actuat. B-Chem. 2018. V. S0925-4005. № 17. P. 31464-8.

28.      Xiaoli He, Zhe Chen, Jianhui Yu, Yingxin Zeng, Yunhan Luo, Jun Zhang, Jieyuan Tang, Huihui Lu. Numerical analysis of optical propagation characteristics of side-polished photonics crystal fiber // OQE. 2014. V. 46. № 10. P. 1261–1268.

29.      Müller-Kirsten H.J. Introduction to quantum mechanics: Schrödinger Equation and path integral. Singapore: World Scientific, 2012. 325 p.

30.      Winitzki S. Cosmological particle production and the precision of the WKB approximation // PhRvD. 2007. V. 72. № 10. P. 10411.

 

 

Полный текст