01.12.2015 , (Web Science, Scopus) (. Vak.ed.gov.ru 16.03.2018)

(01.2019) : GAAS ,


© 2019 . Bo Huang*, Shuang Huang*, Yanwen Ding*, Yurun Sun**, Yongming Zhao**,Jianrong Dong**, Jin Wang*

*   Nanjing University of Posts and Telecommunications, College of Telecommunications & Information Engineering, Nanjing, P.R. China

** Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, P.R. China

. 1,7 880 4,78 . , , 1 2,246 , 44,5%. (, . maximum power point tracking, MPPT). , 88,1% .

: , GaAs, , .



Transistor outline type packaged multi-junction GaAs laser power converter with high output electric power after maximum power point tracking circuit

© 2019    Bo Huang*, Ph.D; Shuang Huang*, postgraduate student; Yanwen Ding*, postgraduate student; Yurun Sun**, Ph.D; Yongming Zhao**, Ph.D; Jianrong Dong**, PhD; Jin Wang*, Ph.D

*   Nanjing University of Posts and Telecommunications, College of Telecommunications & Information Engineering, Nanjing, P.R. China

** Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, P.R. China

E-mail: jinwang@njupt.edu.cn


Submitted 28.08.2018


A multi-junction GaAs laser power converter is designed and fabricated. One bare laser power converter chip can output an electric power of 1.7 W under a light illumination at 808 nm with an optical power of about 4.78 W. Then, the laser power converter is packaged in the transistor outline type. The transistor outline type packaged laser power converter can output an electric power of 1 W for an input light power of about 2.246 W, which results in a conversion efficiency of 44.5%. For practical applications, a power manager module based on the maximum power point tracking technique is also realized and connected to the packaged laser power converter. In the measurement, at the output of the power manager module, more than 88.1% of laser power converter’s output electric power can be extracted.

Keywords: laser power converter, GaAs, power manager, maximum power point tracking, transistor outline type.

OCIS codes: 350.4600, 230.0230, 140.0140



1.         Rosolem J.B. Power-over-fiber applications for telecommunications and for electric utilities, optical fiber and wireless communications // InTech, 2017.

2.         Wang J., Yan J., Ding Y., Lu Y., Jiang J., Wan H., Xu J. Fiber-wireless sensor system based on a power-over-fiber technique // Opt. Eng. 2016. V. 55. P. 031104–031104.

3.         Rosolem J.B., Bassan F.R., Penze R.S., Leonardi A.A., Fracarolli C. Floridia J.P.V. Optical sensingin high voltage transmission lines using power over fiber and free space optics // Optical Fiber Technol. 2015. V. 26. P. 180–183. doi: 10.1016/j.yofte.2015.09.003

4.         Matsuura M., Minamoto Y. Optically powered and controlled beam steering system forradio-over-fiber networks // J. Lightwave Technol. 2017. V. 25. P. 979–988. doi:10.1109/JLT.2016.2631251

5.         Allwood G., Wild G., Hinckley S. Power over fibre: Material properties of homojunction photovoltaic micro-cells // Sixth IEEE Intern. Symp. Electronic Design. Test and Application. 2011. P. 78.

6.         Khvostikov V.P., Kalyuzhnyy N.A., Mintairov S.A., Sorokina S.V., Potapovich N.S., Emelyanov V.M. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures // Semiconductors. 2016. V. 50. P. 1220–1224.

7.         Schubert J., Oliva E., Dimroth F., Guter W.,  Loeckenhoff R., Bett A.W. High-voltage GaAs photovoltaic laser power converters // IEEE Trans. Electron Devices. 2009. V. 56. P. 170–175.

8.        Guan C., Liu W., Gao Q. Influence of the mesa electrode position on monolithic on-chip series interconnect GaAs laser power converter performance // Mat. Sci. Semiconductor Proc. 2018. V. 75. P. 136–142.

9.         Fafard S., York M.C.A., Proulx F., Valdivia C.E., Wilkins M.M., Arès R., Aimez V., Hinzer K., Masson D.P. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures // Appl. Phys. Lett. 2016. V. 108. P. 071101-2–071101-4.

10.       York M.C.A., Fafard S. High efficiency phototransducers based on a novel vertical epitaxial heterostructure architecture (VEHSA) with thin p/n junctions // Appl. Phys. Lett. 2017. V. 50. P. 173003–173025.

11.       Ding Y., Li Q., Lu Y.,  Wang J. TO-packaged, multi-junction GaAs laser power converter with output electric power over 1 W // Conf. Lasers and Electro-Optics Pacific Rim (CLEO-PR). 2017.

12.       Kamarzaman N.A., Tan C.W. A comprehensive review of maximum power point tracking algorithms for photovoltaic systems // Renewable & Sustainable Energy Rev. 2014. V. 37. P. 585–598.

13.       Ma Y., Bai T., Zhou X., Gao Z. Summary of photo voltaic and maximum power point tracking // Control and Decision Conf. IEEE. 2017. P. 2298–2303.

14.       Pallavee B., Nema R.K. Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications // Renewable & Sustainable Energy Rev. 2013. V.  23. Iss. 4. P. 224241.

15.       Karanjkar D.S., Chatterji S., Shimi S.L., Kumar A. Real time simulation and analysis of maximum power point tracking (MPPT) techniques for solar photo-voltaic system // Engineering and Computational Sci. IEEE. 2014. P. 1–6.

16.       Datasheet of LTC3129-1: 15V 200 mA Synchronous Buck-Boost DC/DC Converter with 1.3A Quiescent Current, Linear Technology.