Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (03.2019) : ДИСПЕРСИЯ И КОМПЕНСАЦИЯ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ В ВЫСОКОСКОРОСТНОЙ (32×200 ГБ/С) DWDM-СИСТЕМЕ ПЕРЕДАЧИ ДАННЫХ С ФАЗОСОПРЯЖЕННОЙ ОБРАТНОЙ ВОЛНОЙ

ДИСПЕРСИЯ И КОМПЕНСАЦИЯ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ В ВЫСОКОСКОРОСТНОЙ (32×200 ГБ/С) DWDM-СИСТЕМЕ ПЕРЕДАЧИ ДАННЫХ С ФАЗОСОПРЯЖЕННОЙ ОБРАТНОЙ ВОЛНОЙ

 

© 2019    Djima Kassegne, Simranjit Singh, S. Sanoussi Ouro-Djobo, Barerem-Melgueba Mao

Проанализирована эффективность нескольких способов компенсации искажений в каналах высокоскоростных DWDM-систем. Предложен новый гибридый подход, включающий комбинацию методов оптического обратного распространения и фазсопряженных обратных волн, обеспечивающих компенсацию в отсутствие сигнала накачки. Преимуществами системы являются возможность непосредственного встраивания в передающие линии, а также уменьшение числа используемых компонентов. Дополнительно используется компенсация дисперсии посредством компенсационного дисперсионного волокна. Проведена оценка работоспособности этих методов применительно к 32-канальной DWDM-системе, в которой каждый канал модулируется в формате квадратурной фазовой манипуляции и передает данные со скоростью 200 Гб/с на канал. Сравнительная оценка проведена с использованием фактора качества (Q) и индикаторных диаграмм.

Ключевые слова: оптическая волоконная связь, оптическая связь, нелинейная оптика, оптическое волокно, дисперсия, фазовое сопряжение.

 

DISPERSION AND NONLINEAR COMPENSATION IN 32×200 GB/S PHASE CONJUGATED TWIN WAVES DENSE WAVELENGTH DIVISION MULTIPLEXED SYSTEM

© 2019    D. Kassegne*, Student (Physics); S. Singh**, Assistant Prof. (ECE); S. S. Ouro-Djobo*, Associate Prof. (Physics); M.-B. Mao*, Assistant Prof. (Physics and CIC)

*   University of Lomé, Togo

** Punjabi University, Patiala, Punjab, India

** E-mail: simrankatron@gmail.com

Submitted 28.03.2018

DOI:10.17586/1023-5086-2019-86-03-40-46

We have analyzed the performance of several distortion compensation techniques in the scenario of ultra-high speed dense wavelength division multiplexed channels. A new hybrid approach, which is a combination of optical back propagation and phase conjugation twin waves, is proposed for the compensation without any pump signal. One of the advantages of the proposed techniques lies not only in their ability to be implemented inline but also they will reduce the number of components in the transmission systems. In addition, a dispersion compensation technique has been applied by using a dispersion compensating fiber. The performance of these different techniques is evaluated in a system of 32 channels, in which each channel is modulated with quadrature phase shift keying format and transmits the data at a rate of 200 Gb/s per channel. We performed a comparative analysis of these techniques by evaluating their performance in terms of quality factor and eye diagrams.

Keywords: optical fiber communication, optical communication, nonlinear optics, optical fiber, phase conjugation dispersion.

OCIS codes: 060.2330, 060.4510, 260.2030, 060.4370, 190.5040

 

References

1.         Xie C. Impact of nonlinear and polarization effects in coherent systems // Opt. Exp. 2011. V. 19. № 26. P. B915–B930.

2.         Liang X., Kumar S. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification // Opt. Exp. 2017. V. 25. № 5. P. 5031–5043.

3.         Singh S., Kaler R.S. Flat-gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system // IEEE Photon. Techn. Lett. 2013. V. 25. № 3. P. 250–252

4.         Singh S., Kaler R.S.  Performance evaluation and characterization of hybrid optical amplifiers for DWDM systems at ultra narrow channel spacing // J. Russian Laser Research. 2014. V. 35. № 2. P. 211–218.

5.         Reis J. D., Teixeira A.L. Cross-phase modulation impact on coherent optical 16 QAM–WDM transmission systems // Microwave and Opt. Techn. Lett. 2011. V. 53. № 3. P. 633–663.

6.         Shieh W., Chen X. Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM system // IEEE Photon. J. 2011. V. 3. № 2. P. 158–173.

7.         Paré C., Villeneuve  A., Bélanger P.-A., Doran N.J. Compensating for dispersion and the nonlinear Kerr effect without phase conjugation // Opt. Lett. 1996. V. 21. № 7. P. 459–461.

8.        Ip E., Kahn J.M. Compensation of dispersion and nonlinear impairments using digital back propagation // J. Lightw. Technol. 2008. V. 26. № 20. P. 3416–3425.

9.         Mateo E., Zhu L., Li G. Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation // Opt. Exp. 2008. V. 16. № 20. P. 16124–16137.

10.       Du L.B., Lowery A.J. Improved single channel back propagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems // Opt. Exp. 2010. V. 18. № 16. P. 17075–17088.

11.       Malekiha M., Yang D., Kumar S. Comparison of optical back propagation schemes for fiber-optic communications // Opt. Fiber Technol. 2013. V. 19. P. 4–9.

12.       Liu L., Liangchuan L., Yuanda H., Kai C., Qianjin X., Hauske F.N., Changsong X., Yi C. Intra-channel nonlinearity compensation by inverse Volterra series transfer functions // IEEE, OSA. J. Lightw. Technol. 2012. V. 30. № 3. P. 310–316.

13.       Reis J.D., Teixeira A.L. Unveiling nonlinear effects in dense coherent optical WDM systems with Volterra series // Opt. Exp. 2010. V. 18. № 8. P. 8660–8670.

14.       Guiomar F.P., Reis J.D., Teixeira A., Pinto A.N. Digital post compensation using Volterra series transfer functions // IEEE Photon. Technol. Lett. 2011. V. 23. № 19. P. 8660–8670.

15.       Morshed M., Du L.B., Foo B., Pelusi M.D., Lowery A.J. Optical phase conjugation for nonlinearity compensation of 1.21-Tb/s Pol-Mux coherent optical OFDM // 18th Opt. and Commun. Conf., 2013. Paper PD3-4.

16.       Solis-Trapala K., Inoue T., Namiki S. Nearly-ideal optical phase conjugation based nonlinear compensation system // Opt. Fiber Commun. Conf., OSA, 2014. Paper W3F.8.

17.       Ellis A.D., McCarthy M. Impact of optical phase conjugation on the Shannon capacity limit // Opt. Fiber Commun. Conf., OSA, 2016. Paper Th4F.2.

18.       Liu X. Twin-wave-based optical transmission with enhanced linear and nonlinear performances // J. Lightw. Technol. 2015. V. 33. P. 1037–1043.

19.       Liu X., Chraplyvy A.R., Winzer P.J., Tkach R.W., Chandrasekhar S. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit // Nature Photonics. 2013. V. 7. P. 560–568.

20.      Yoshida T., Sugihara T., Ishida K., Mizuochi T. Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals // Opt. Fiber Commun. Conf., San Francisco, 2014. Paper M3C.6.

21.       Kumar S., Yang D. Optical back propagation for fiber-optic communications using highly nonlinear fibers // Opt. Lett. 2011. V. 36. № 7. P. 1038–1040.

22.      Shao J., Kumar S. Optical back propagation for fiber-optic communications using optical phase conjugation at the receiver // Opt. Lett. 2012. V. 37. № 15. P. 3012–3014.

23.      Kumar S., Shao J. Optical back propagation with optimal step size for fiber optic transmission systems // IEEE Photon. Technol. Lett. 2013. V. 25. № 5. P. 523–526.

24.      Liang X., Kumar S., Shao J. Ideal optical back propagation of scalar NLSE using dispersion-decreasing fibers for WDM transmission // Opt. Exp. 2013. V. 21. № 23. P. 28668–28675.

25.      Amari A., Ciblat P., Jaouen Y. Inter-subcarrier nonlinear interference canceller for long-haul Nyquist-WDM transmission // IEEE Photon. Technol. Lett. 2016. V. 28. № 23. P. 2760–2763.

26.      Hu H., Jopson R.M., Gnauck A.H., Randel S., Chandrasekhar S. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations // Opt. Exp. 2017. V. 25. № 3. P. 1618–1628.

27.       Liang X., Kumar S. Optical back propagation for compensating nonlinear impairments in fiber optic links with ROADMs // Opt. Exp. 2016. V. 24. № 20. P. 22682–22692.

28.      Singh S., Kaler R.S. Comparison of pre-, post- and symmetrical compensation for 96 channel DWDM system using PDCF and PSMF // Optik. 2013. V. 124. P. 1808–1813.

29.      Singh S.P., Singh N. Nonlinear effects in optical fibers: Origin, management and applications // PIER 73. 2007. P. 249–275.

30.      Verma R., Garg P. Comparative analysis of self phase modulation (SPM) and cross phase modulation (CPM) // Internat. J. Advanced Research in Computer Sci. and Electronics Eng. 2012. V. 1. № 3. P. 97–102.

31.       Reis J.D., Teixeira A.L. Cross-phase modulation impact on coherent optical 16 QAM–WDM transmission systems // Micro and Opt. Techn. Lett. 2011. V. 53. № 3. P. 633–663.

 

 

Полный текст