袜篦眍-蝈蹴梓羼觇
弦茸叛嗜 朴型浪
桤溧弪 1931 泐溧
 
   
畜耨觇 忄痂囗 襦轵 理汶栝耜栝 忄痂囗 襦轵
   
       
   
       
羊囹 镱耠邃礤泐 恹矬耜

蓦尻蝠铐睇 忮瘃梃
恹矬耜钼 磬麒磬 2008


离羿忤蝽 箨噻囹咫
2000-2010


444
鲤蹊 钽豚怆屙栝
恹矬耜钼 2002-2007


绣赈桤栩 噤疱襦

马桁囗棹 噔蝾痤 疱鲥礴屙蝾!
- 项漕 矬犭桕圉梃
- 项漕 疱鲥礴桊钼囗 耱囹彘
- 诣镱忸 漕泐忸
- 橡噔桦 铘铕祀屙
- 项塍麇龛 噔蝾瘃觐泐 忸珥嚆疣驿屙
- 绣溧牿桀眄 桕


暑眚嚓螓

项滹桉赅

枢痱 襦轵




企痦嚯 01.12.2015 漕矬 吕 潆 矬犭桕圉梃 铖眍忭 疱珞朦蜞蝾 滂耨屦蜞鲨 赅 桤溧龛, 怩钿 戾驿箜囵钿睇 疱翦疣蜩忭 徉琨 耔耱屐 鲨蜩痤忄龛 (Web Science, Scopus) (耢. Vak.ed.gov.ru 襄疱麇睃 骟痦嚯钼 塘 16.03.2018)

理眍蜞鲨 (01.2021) : 欣切懒我世 市酉臀老判矣型蚊 乃韧臀晕视淹蚊 瘟谂室嚷 惹膛团腿盘 晕视淹蚊 欣蜒椅咄冗 嫌遗 娜咽信彝蚊 吓信仕拮磐冗 巳颓温紊 饰滔瓮磐役

欣切懒我世 市酉臀老判矣型蚊 乃韧臀晕视淹蚊 瘟谂室嚷 惹膛团腿盘 晕视淹蚊 欣蜒椅咄冗 嫌遗 娜咽信彝蚊 吓信仕拮磐冗 巳颓温紊 饰滔瓮磐役

 

© 2021 . Z. Zhang, W. Zheng, D. Gong, H. Li

橡邃耱噔脲磬 聃屐 滂耜疱蝽钽 镥疱觌屙 腓礴钼铋 觐祜铐屙螓 珏痍嚯-腓礴钼钽 牮箫眍囡屦蝮痦钽 潆桧眍纛牦耥钽 钺牝桠 痤觇 镱脲 琊屙. 橡邃豚汔屐 铒蜩麇耜 耔耱屐 怅膻鬣弪 蝈脲耜铒 镱 聃屐 忘铐, 耦溴疰帙栝 觐腚桁囹铕眢 腓礴钼簋 沭箫稃 镥疱觌噱禧 纛牦耥 疣耨蝾龛屐. 蔓耦觐 赅麇耱忸 桤钺疣驽龛 赅 潆桧眍纛牦耥铎, 蜞 觐痤蜿铘铌篑眍 疱骅爨 镳 桤戾礤龛 篑腩忤 疣犷螓 蝈祜屦囹箴 钺羼镥麒忄弪 镥疱戾龛屐 觐腚桁囹铕眍 沭箫稃. 琼圜屙 趔黻鲨 镥疱溧麒 祛潴鲨 镳邂铖躅 0,5 磬 鬣耱铗 袜殛忤耱, 80% 屦汨 觐眦屙蝠桊箦蝰 牮箧赍 滂囔弪痤 0,025 祆 (戾礤, 麇 溻 镨犟咫), 镱脲 琊屙 爨犟桁嚯 滂耱铕耔 耦耱噔弪 0,962% 赅 潆桧眍纛牦耥铎, 蜞 觐痤蜿铘铌篑眍 疱骅爨. 橡邃耱噔脲眄 耔耱屐 镥疱觌噱禧 纛牦耥 疣耨蝾龛屐 钺羼镥麒忄弪 恹耦觐 赅麇耱忸 桤钺疣驽龛 镳 怦艴 珥圜屙 纛牦耥钽 疣耨蝾龛, 镳铖蜞 镱 觐眈蝠箨鲨 篑蝾轺桠 疣犷蝈.

孰邂 耠钼: 铒蜩麇耜 觐眈蝠箨鲨, 耔耱屐 镥疱戾眄钽 纛牦襦, 铒蝾尻蝠铐睇 蝈脲耜铒

 

Design of a zoom telescope optical system with large aperture, long focal length, and wide field of view via a catadioptric switching solution

© 2021    Zhenduo Zhang*, PhD (Physics); Wenbo Zheng*, graduate student (Physics); Dun Gong**, PhD (Physics); Hongzhuang Li**, PhD (Physics)

*   Navigation College, Dalian Maritime University, Dalian, China

** Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China

E-mail: gongdun@sina.com

幽 535, 617.7, 628.9

项耱箫桦 疱溧牿棹 06.07.2020

DOI:10.17586/1023-5086-2021-88-01-22-31

This study presents a catadioptric switching solution for a zoom telescope optical system to achieve a large aperture, long focal length, and wide field of view. The proposed optical system combines a Newton-type main system with a collimator group and a switching zoom group. Further, clear imaging of long and short focal lengths under different operating ranges and temperatures is realized using a moving collimator group. For the field of view at both long and short focal lengths, the modulation transfer function exceeds 0.5 at the Nyquist frequency, 80% of the energy is concentrated in a diameter of 0.025 mm (i.e., less than two pixels), and the maximal distortion is 0.962%. The presented switching-zoom system exhibits high imaging quality for each focal length as well as a simple structure and stable performance.

Keywords: optical design, zoom system, optoelectronic telescope.

OCIS codes: 110.2970, 280.4788, 350.4600

 

REFERENCES

1.    Werth M., Gerwe D., Griffin S., Calef B., Idell P. A ground-based optical imaging of GEO satellites with a rotating structure in a sparse aperture array // Proc. IEEE Aerospace Conf. 2–9 March 2019. Big Sky, MT, USA. P. 1–11.

2.   Chang S.-T., Lin Y.-C., Lien C.-C., Huang T.-M., Tsay H.-L., Miau J.-J. The design and assembly of a long-focal-length telescope with aluminum mirrors // Proc. Int. Conf. Space Optics. 9–12 October 2018. Chania, Greece. P. 245.

3.   Ramsay M., Sobek R., Canzian B., Maloney J. Future ground-based telescopes design requirements // Proc. SPIE Int. Soc. Opt. Eng. 2010. V. 7733. Paper 77330Y.

4.   Lo Presti D., Gallo G., Bonanno D.L., et al. The MEV project: design and testing of a new high-resolution telescope for Muography of Etna Volcano // Nuclear Instrum. Meth. Phys. Res. 2018. V. 904. P. 195–201.

5.   Erbas B., Underwood C.I. Active focusing system for an earth imaging reflecting telescope // Proc. Conf. RAST. 9–11 June 2005. Istanbul, Turkey. P. 545–550.

6.   Israni D., Patel S., Shah A. Comparison of different techniques of camera autofocusing // Proc. Int. Conf. Info. Commun. Technol. Intell. Sys. 1. 28–29 November, 2015. Ahmedabad, India. P. 125–135.

7.    Etherton J., Rees P.C.T., Steele I.A. Telescope design and efficiency // Proc. Observ. Opera. Optimize Sci. Return II: Astro. Tele. Instru. 25 July 2000. Munich, Germany. P. 298–313.

8.   Steve H., Elliott H. High-resolution speckle imaging // Phys. Today. 2018. V. 71. P. 78–79.

9.   Hope D.A., Jefferies S.M., Hart M., Nagy J.G. High-resolution speckle imaging through strong atmospheric turbulence // Opt. Exp. 2016. V. 24. 11. P. 12116.

10. Wang R.-Q., Zhang Z.-Y., Guo C.-L., Xue D.-L., Liu H. Design/fabrication and performance test of a diffractive telescope system with high diffraction efficiency // Acta Photon. Sin. 2017. V. 46. 3. P. 46.

11.  Cassaing F., Mugnier L.M. Optimal sparse apertures for phased-array imaging // Opt. Lett. 2018. V. 43. 19. P. 4655–4658. 

12.  Sanders G.H. The thirty meter telescope (TMT): An international observatory // J. Astrophys. Astr. 2013. V. 34. P. 81–86.

13.  Stepp L.M., Gilmozzi R., Hall H.J., Gunnels S. The Giant Magellan telescope (GMT): Gregorian instrument rotator bearing // Proc. SPIE Int. Soc. Opt. Eng. 2014. V. 9145. Paper 91455E.

14.  Huang Z., Huang R., Xue X. Analysis of SNR for high-orbit target detected by ground-based photoelectric system // Appl. Sci. 2018. V. 8. 12. P. 2604.

15.  Bourgois R., Geyl R. Manufacturing ELT optics: Year 2 report // Optical Fabrication and Testing. 2019. Paper OM3A.3.

16.  Metwally M., Bazan T.M., Eltohamy F., Mahmoud F. Optical design, tolerance analysis, and baffling of very high-resolution satellite telescopes // Proc. Int. Conf. Electri. Eng. 25 March 2018. Chengdu, China. P. 1–11.

17.  Massie N.A., Oster Y., Poe G., Seppala L., Mike S. Low-cost, high-resolution telescopes for imaging low-earth orbit satellites // Proc. SPIE Int. Soc. Opt. Eng. 1990. V. 1117. P. 313–329.

18. Massie N.A., Oster Y., Poe G., Seppala L., Mike S. Low-cost, high-resolution, single-structure array telescopes for imaging of low-Earth-orbit satellites // Appl. Opt. 1992. V. 31. 4. P. 447–456.

19.  Sun R.Y., Yu S.X. Precise measurement of the light curves for space debris with wide field of view telescope // Astrophy. Space Sci. 2019. V. 364. 3. Paper 39.

20. Hui J., Ma H.-T., Yan C.-X., Zheng Y.Q., Jiang H.-l.,  Lin, J. Wide spectrum, a large field of view telescope system design small distortion // Proc. SPIE Int. Soc. Opt. Eng. 2013. V. 8759. Paper 87590X.

21.  Park H.S., Axelrod T.S., Colella N.J., Colvin M.E., Ledebuhr A.G. Realtime tracking system for the wide-field-of-view telescope project // Proc. SPIE Int. Soc. Opt. Eng. 1989. V. 1111.

22. He C.L., Wei H.G., Shen M.Z. Numerical analysis of anisoplanatism of wide-field-of-view telescope imaging through turbulent atmosphere // Opto-Electronic Eng. 2011. V. 38. 12. P. 13–17.

23. Guo X.H., Lu T.L., Zhang W., Wang F.P., Zhao J. Design of a continuously zoom optical system // Proc. Int. Conf. Opt. Instrum. Technol. 28–30 October 2017. Beijing, China. P. 66.

24. Tian T.-Y., Wang H. Optical zoom system with long focal length and large aperture // Opt. Prec. Eng. 2014. V. 22. 9. P. 2369–2374.

25. Li Z., Dai M., Li J.-Q. Continuous zooming imaging system driven by stepping motors // Chinese Opt. 2018. V. 11. 10. P. 779–789.

26. Yan P.P., Liu K., Duan J., Jiang K., Shan Q.S. Switch-zoom optical system design of large aperture ground-based photoelectric detection // Proc. SPIE Int. Soc. Opt. Eng. 2016. V. 9682. Paper 968215.

27. Miao W.J., Luo X.S., Lu J., Li Z.W., Du B.Q., Ji R. Five switched zoom optical system for focometer // Opt. Techni. 2018. V. 44. 2. P. 177–182.

28. Yang L.-H., Li J., Tao Y., Lin J., Meng J.-H. Confocal design for switch-zoom optical system // J. Appl. Opt. 2014. V. 35. 3. P. 386–390.

29. Li Z. Research on simulation technology of photoelectric theodolite infrared imaging in complex environment // Thesis. Master., Xidian University, Dept. of Pys. an Electr. Eng. 2014. P. 109. (Citable URI: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1017300147.nh&DbName=CMFD2018)

30. Han C.-Y., Wang H. Performance optimization of electro-optical imaging systems // Opt. Prec. Eng. 2015. V. 23. 1. P. 1–9.

31.  Zhang Y. Applied optics. 4th ed. Beijing: Publishing House of Electronics Industry, 2015. 620 p.

32. Wang Z. The Manual of optical technology. Beijing: Publishing House of Mechanical Industry, 1987. 1762 p.

33. Han C. MTF analysis and radiation calibration of space camera. Beijing: Science Publishing Company, 2005. 564 p.

34.      Boreman G.D. Modulation transfer function in optical and electro-optical systems // Russ. Chem. Rev. 2001. V. 71. 2. P. 159–179.

 

 

项腠 蝈犟