© 2021 ã. Z. Zhang, W. Zheng, D. Gong, H. Li
Ïðåäñòàâëåíà ñõåìà äèñêðåòíîãî ïåðåêëþ÷åíèÿ ëèíçîâîé êîìïîíåíòû çåðêàëüíî-ëèíçîâîãî êðóïíîàïåðòóðíîãî äëèííîôîêóñíîãî îáúåêòèâà ñ øèðîêèì ïîëåì çðåíèÿ. Ïðåäëàãàåìàÿ îïòè÷åñêàÿ ñèñòåìà âêëþ÷àåò òåëåñêîï ïî ñõåìå Íüþòîíà, ñîäåðæàùèé êîëëèìàòîðíóþ è ëèíçîâóþ ãðóïïû ñ ïåðåêëþ÷àåìûì ôîêóñíûì ðàññòîÿíèåì. Âûñîêîå êà÷åñòâî èçîáðàæåíèÿ êàê â äëèííîôîêóñíîì, òàê è â êîðîòêîôîêóñíîì ðåæèìàõ ïðè èçìåíåíèè óñëîâèé ðàáîòû è òåìïåðàòóðû îáåñïå÷èâàåòñÿ ïåðåìåùåíèåì êîëëèìàòîðíîé ãðóïïû. Çíà÷åíèÿ ôóíêöèè ïåðåäà÷è ìîäóëÿöèè ïðåâîñõîäÿò 0,5 íà ÷àñòîòå Íàéêâèñòà, 80% ýíåðãèè êîíöåíòðèðóåòñÿ â êðóæêå äèàìåòðîì 0,025 ìì (ìåíåå, ÷åì äâà ïèêñåëà), â ïîëå çðåíèÿ ìàêñèìàëüíàÿ äèñòîðñèÿ ñîñòàâëÿåò 0,962% êàê â äëèííîôîêóñíîì, òàê è â êîðîòêîôîêóñíîì ðåæèìàõ. Ïðåäñòàâëåííàÿ ñèñòåìà ñ ïåðåêëþ÷àåìûì ôîêóñíûì ðàññòîÿíèåì îáåñïå÷èâàåò âûñîêîå êà÷åñòâî èçîáðàæåíèÿ ïðè âñåõ çíà÷åíèÿõ ôîêóñíîãî ðàññòîÿíèÿ, ïðîñòà ïî êîíñòðóêöèè è óñòîé÷èâà â ðàáîòå.
Êëþ÷åâûå ñëîâà: îïòè÷åñêàÿ êîíñòðóêöèÿ, ñèñòåìà ïåðåìåííîãî ôîêóñà, îïòîýëåêòðîííûé òåëåñêîï
Design of a zoom telescope optical system with large aperture, long focal length, and wide field of view via a catadioptric switching solution
© 2021 Zhenduo Zhang*, PhD (Physics); Wenbo Zheng*, graduate student (Physics); Dun Gong**, PhD (Physics); Hongzhuang Li**, PhD (Physics)
* Navigation College, Dalian Maritime University, Dalian, China
** Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
E-mail: gongdun@sina.com
ÓÄÊ 535, 617.7, 628.9
Ïîñòóïèëà â ðåäàêöèþ 06.07.2020
DOI:10.17586/1023-5086-2021-88-01-22-31
This study presents a catadioptric switching solution for a zoom telescope optical system to achieve a large aperture, long focal length, and wide field of view. The proposed optical system combines a Newton-type main system with a collimator group and a switching zoom group. Further, clear imaging of long and short focal lengths under different operating ranges and temperatures is realized using a moving collimator group. For the field of view at both long and short focal lengths, the modulation transfer function exceeds 0.5 at the Nyquist frequency, 80% of the energy is concentrated in a diameter of 0.025 mm (i.e., less than two pixels), and the maximal distortion is 0.962%. The presented switching-zoom system exhibits high imaging quality for each focal length as well as a simple structure and stable performance.
Keywords: optical design, zoom system, optoelectronic telescope.
OCIS codes: 110.2970, 280.4788, 350.4600
REFERENCES
1. Werth M., Gerwe D., Griffin S., Calef B., Idell P. A ground-based optical imaging of GEO satellites with a rotating structure in a sparse aperture array // Proc. IEEE Aerospace Conf. 2–9 March 2019. Big Sky, MT, USA. P. 1–11.
2. Chang S.-T., Lin Y.-C., Lien C.-C., Huang T.-M., Tsay H.-L., Miau J.-J. The design and assembly of a long-focal-length telescope with aluminum mirrors // Proc. Int. Conf. Space Optics. 9–12 October 2018. Chania, Greece. P. 245.
3. Ramsay M., Sobek R., Canzian B., Maloney J. Future ground-based telescopes design requirements // Proc. SPIE Int. Soc. Opt. Eng. 2010. V. 7733. Paper 77330Y.
4. Lo Presti D., Gallo G., Bonanno D.L., et al. The MEV project: design and testing of a new high-resolution telescope for Muography of Etna Volcano // Nuclear Instrum. Meth. Phys. Res. 2018. V. 904. P. 195–201.
5. Erbas B., Underwood C.I. Active focusing system for an earth imaging reflecting telescope // Proc. Conf. RAST. 9–11 June 2005. Istanbul, Turkey. P. 545–550.
6. Israni D., Patel S., Shah A. Comparison of different techniques of camera autofocusing // Proc. Int. Conf. Info. Commun. Technol. Intell. Sys. 1. 28–29 November, 2015. Ahmedabad, India. P. 125–135.
7. Etherton J., Rees P.C.T., Steele I.A. Telescope design and efficiency // Proc. Observ. Opera. Optimize Sci. Return II: Astro. Tele. Instru. 25 July 2000. Munich, Germany. P. 298–313.
8. Steve H., Elliott H. High-resolution speckle imaging // Phys. Today. 2018. V. 71. P. 78–79.
9. Hope D.A., Jefferies S.M., Hart M., Nagy J.G. High-resolution speckle imaging through strong atmospheric turbulence // Opt. Exp. 2016. V. 24. ¹ 11. P. 12116.
10. Wang R.-Q., Zhang Z.-Y., Guo C.-L., Xue D.-L., Liu H. Design/fabrication and performance test of a diffractive telescope system with high diffraction efficiency // Acta Photon. Sin. 2017. V. 46. ¹ 3. P. 46.
11. Cassaing F., Mugnier L.M. Optimal sparse apertures for phased-array imaging // Opt. Lett. 2018. V. 43. ¹ 19. P. 4655–4658.
12. Sanders G.H. The thirty meter telescope (TMT): An international observatory // J. Astrophys. Astr. 2013. V. 34. P. 81–86.
13. Stepp L.M., Gilmozzi R., Hall H.J., Gunnels S. The Giant Magellan telescope (GMT): Gregorian instrument rotator bearing // Proc. SPIE Int. Soc. Opt. Eng. 2014. V. 9145. Paper 91455E.
14. Huang Z., Huang R., Xue X. Analysis of SNR for high-orbit target detected by ground-based photoelectric system // Appl. Sci. 2018. V. 8. ¹ 12. P. 2604.
15. Bourgois R., Geyl R. Manufacturing ELT optics: Year 2 report // Optical Fabrication and Testing. 2019. Paper OM3A.3.
16. Metwally M., Bazan T.M., Eltohamy F., Mahmoud F. Optical design, tolerance analysis, and baffling of very high-resolution satellite telescopes // Proc. Int. Conf. Electri. Eng. 25 March 2018. Chengdu, China. P. 1–11.
17. Massie N.A., Oster Y., Poe G., Seppala L., Mike S. Low-cost, high-resolution telescopes for imaging low-earth orbit satellites // Proc. SPIE Int. Soc. Opt. Eng. 1990. V. 1117. P. 313–329.
18. Massie N.A., Oster Y., Poe G., Seppala L., Mike S. Low-cost, high-resolution, single-structure array telescopes for imaging of low-Earth-orbit satellites // Appl. Opt. 1992. V. 31. ¹ 4. P. 447–456.
19. Sun R.Y., Yu S.X. Precise measurement of the light curves for space debris with wide field of view telescope // Astrophy. Space Sci. 2019. V. 364. ¹ 3. Paper 39.
20. Hui J., Ma H.-T., Yan C.-X., Zheng Y.Q., Jiang H.-l., Lin, J. Wide spectrum, a large field of view telescope system design small distortion // Proc. SPIE Int. Soc. Opt. Eng. 2013. V. 8759. Paper 87590X.
21. Park H.S., Axelrod T.S., Colella N.J., Colvin M.E., Ledebuhr A.G. Realtime tracking system for the wide-field-of-view telescope project // Proc. SPIE Int. Soc. Opt. Eng. 1989. V. 1111.
22. He C.L., Wei H.G., Shen M.Z. Numerical analysis of anisoplanatism of wide-field-of-view telescope imaging through turbulent atmosphere // Opto-Electronic Eng. 2011. V. 38. ¹ 12. P. 13–17.
23. Guo X.H., Lu T.L., Zhang W., Wang F.P., Zhao J. Design of a continuously zoom optical system // Proc. Int. Conf. Opt. Instrum. Technol. 28–30 October 2017. Beijing, China. P. 66.
24. Tian T.-Y., Wang H. Optical zoom system with long focal length and large aperture // Opt. Prec. Eng. 2014. V. 22. ¹ 9. P. 2369–2374.
25. Li Z., Dai M., Li J.-Q. Continuous zooming imaging system driven by stepping motors // Chinese Opt. 2018. V. 11. ¹ 10. P. 779–789.
26. Yan P.P., Liu K., Duan J., Jiang K., Shan Q.S. Switch-zoom optical system design of large aperture ground-based photoelectric detection // Proc. SPIE Int. Soc. Opt. Eng. 2016. V. 9682. Paper 968215.
27. Miao W.J., Luo X.S., Lu J., Li Z.W., Du B.Q., Ji R. Five switched zoom optical system for focometer // Opt. Techni. 2018. V. 44. ¹ 2. P. 177–182.
28. Yang L.-H., Li J., Tao Y., Lin J., Meng J.-H. Confocal design for switch-zoom optical system // J. Appl. Opt. 2014. V. 35. ¹ 3. P. 386–390.
29. Li Z. Research on simulation technology of photoelectric theodolite infrared imaging in complex environment // Thesis. Master., Xidian University, Dept. of Pys. an Electr. Eng. 2014. P. 109. (Citable URI: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1017300147.nh&DbName=CMFD2018)
30. Han C.-Y., Wang H. Performance optimization of electro-optical imaging systems // Opt. Prec. Eng. 2015. V. 23. ¹ 1. P. 1–9.
31. Zhang Y. Applied optics. 4th ed. Beijing: Publishing House of Electronics Industry, 2015. 620 p.
32. Wang Z. The Manual of optical technology. Beijing: Publishing House of Mechanical Industry, 1987. 1762 p.
33. Han C. MTF analysis and radiation calibration of space camera. Beijing: Science Publishing Company, 2005. 564 p.
34. Boreman G.D. Modulation transfer function in optical and electro-optical systems // Russ. Chem. Rev. 2001. V. 71. ¹ 2. P. 159–179.
Ïîëíûé òåêñò