Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (12.2021) : OPTICAL CAMERA COMMUNICATIONS: PRACTICAL CONSTRAINTS, APPLICATIONS, POTENTIAL CHALLENGES AND FUTURE DIRECTIONS

OPTICAL CAMERA COMMUNICATIONS: PRACTICAL CONSTRAINTS, APPLICATIONS, POTENTIAL CHALLENGES AND FUTURE DIRECTIONS

 

© 2021    Syed Agha Hassnain Mohsan

Optical Communication Laboratory, Ocean College, Zhejiang University, Zhoushan, China

E-mail: Hassnainagha@zju.edu.cn

УДК 001; 001.8; 001.18

Submitted 02.08.2021

DOI:10.17586/1023-5086-2021-88-12-68-86

Mobile wireless communications mainly rely on radio frequency to transmit data. However, its congested spectrum cannot meet the growing requirements for future high data rate applications. Recently, optical wireless communication techniques have opened up a vast optical spectrum and emerged as a cost-effective and practical alternative to congested radio frequency wireless technologies. As a supplementary technique of high-speed optical wireless communication, optical camera communication has become very attractive due to recent developments in communications hinging on camera or image sensors in smart devices with low implementation complexity. In conjunction with the ubiquity in consumer electronics such as pads and smartphones, optical camera communication takes advantages of an image sensor or camera in areas such as intelligent transportation, vehicular communication, motion capture, indoor localization and internet-of-things. Optical camera communication and visible light communication are considered within IEEE 802.15.7m standardization. Optical camera communication based on camera and organic/inorganic light emitting diodes (LEDs) offer localization and low-rate transmission in indoor as well as outdoor applications. This paper presents a comprehensive survey of optical camera communication, principles and recent standardization activities. This survey covers multiple aspects of optical camera communication such as transceivers, multi-input and multiple-output (MIMO) and diversity. It outlines various applications of optical camera communication. It also addresses some practical constraints, modulation schemes and error correction coding techniques for optical camera communication systems. Finally, in the last section of this survey, potential challenges and future research directions are presented.

Keywords: optical wireless communication, optical camera communication, radio frequency, visible light communications, image sensor, camera.

OCIS Codes: 040.0040; 040.1490; 230.0230; 060.4510.

 

 

Оптические камеры связи: практические ограничения, приложения, проблемы и направления на будущее

© 2021 г. Syed Agha Hassnain Mohsan

Передача данных при мобильной беспроводной связи, как правило, использует радиочастотный диапазон. Однако перегруженность его спектра не может удовлетворить растущие требования перспективных приложений с высокой скоростью передачи данных. В последнее время развитие оптической беспроводной связи (optical wireless communication (OWC)) сделало передачу в широком оптическом спектре рентабельной и практичной альтернативой перегруженным радиочастотным беспроводным технологиям. Наряду с повсеместным использованием в бытовой электронике (планшеты и смартфоны), развиваются методы, основанные на оптических камерах связи (ОКС) (OCC — optical camera communication) и датчиках изображений (image sensor, IS), перспективных для использования в таких областях, как интеллектуальный транспорт, автомобильная связь, технологии захвата движения, локализация расположения объектов как внутри, так и вне помещений, а также доступ в Интернет Вещей. Недавние разработки в области связи, комбинирующие камеры или датчики изображения с интеллектуальными устройствами с низкой сложностью реализации, делают оптические камеры связи очень привлекательными как дополнительных устройств в каналах высокоскоростных линий оптической связи.

Представлен всесторонний обзор оптических камер связи, принципов их работы и недавних мероприятий по стандартизации. Этот обзор охватывает несколько аспектов оптических камер связи, таких как приёмопередатчики, многоканальные системы (multiple-input multiple-output, MIMO) и диверсификацию. В нём описаны различные применения OКC. В нём также рассматриваются некоторые практические ограничения, схемы модуляции и методы кодирования с исправлением ошибок для систем OКC. Наконец, в последнем разделе этого обзора представлен анализ проблем и направлений будущих исследований.

Ключевые слова: оптическая беспроводная связь, оптическая камера связи, радиочастота, связь в видимом свете (VLC), датчик изображения, камера.

 

References

1.    Lajos Hanzo, Harald Haas, Sandor Imre et al. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless // Proceedings of the IEEE. 2012. V. 100. Iss. Special Centennial.  P. 1853–1888.

2.   F Jejdling-Ericson. Ericsson mobility report // Ericsson. Stock. Sweden. Tech. Rep. Ericsson. 2018. P. 1–13.

3.   Nazih Khaddaj Mallat, Madeeha Ishteaq, Ateeq Ur Rehman et al. Millimeter-wave in the face of 5G communication potential applications. // IETE Journal of Research. 2020. P. 1–9.

4.   Zhi Chen, Xinying Ma, Bo Zhang et al. A survey on terahertz communications // China Communications. 2019. V. 16. Iss. 2. P. 1–35.

5.   Murat Uysal, Carlo Capsoni, Zabih Ghassemlooy et al. Optical wireless communications // Switz. Springer. 2016. P. 107–122.

6.   Alessandro Minotto, Paul A. Haigh, Lukasz G. Lukasiewicz et al. Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes // Light: Science & Applications. 2020. V. 9. Iss. 70. P. 1–11.

7.    Sudhanshu Arya, Yeon Ho Chung. Novel indoor ultraviolet wireless communication: Design implementation, channel modeling, and challenges // IEEE Systems Journal. 2020. V. 15. Iss. 2. P. 2349–2360.

8.   Parth H. Pathak, Xiaotao Feng, Pengfei Hu et al. Visible light communication, networking, and sensing: A survey, potential and challenges // IEEE communications surveys & tutorials. 2015. V. 17. Iss. 4. P. 2047–2077.

9.   Cahyadi Willy Anugrah, Yeon Ho Chung, Zabih Ghassemlooy et al. Optical camera communications: principles, modulations, potential and challenges // Electronics. 2020. V. 9. Iss. 9. P. 1339.

10. Abderrahmen Trichili, Mitchell A. Cox, Boon S. Ooi, Mohamed-Slim Alouini. Roadmap to free space optics // JOSA. 2020. B. V. 37. Iss.11. P. A184–A201.

11.  Mohammad Ali Khalighi, Murat Uysal. Survey on free space optical communication: A communication theory perspective // IEEE communications surveys & tutorials. 2014. V. 16.4. P. 2231–2258.

12.  Muhammad Salman Bashir, Mark R. Bell. Optical beam position tracking in free-space optical communication systems // IEEE Transactions on Aerospace and Electronic Systems. 2017. V. 54. Iss. 2. P. 520–536.

13.  Yagiz Kaymak, Roberto Rojas-Cessa, Jianghua Feng et al. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications // IEEE Communications Surveys & Tutorials. 2018. V. 20. Iss. 2. P. 1104–1123.

14.  Harilaos G Sandalidis, Theodoros A. Tsiftsis, George K. Karagiannidis et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors // IEEE Communications Letters. 2018. V. 12. Iss. 1. P. 44–46.

15.  El Mehdi Amhoud, Abderrahmen Trichili, Boon S. Ooi et al. OAM mode selection and space-time coding for atmospheric turbulence mitigation in FSO communication // IEEE Access. 2019. V. 7. P. 88049–88057.

16.  Abderrahmen Trichili, Ki-Hong Park, Mourad Zghal et al. Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives // IEEE Communications Surveys & Tutorials. 2019. V. 21. Iss. 4. P. 3175–3203.

17.  Prabhat Kumar Sharma, Ankur Bansal, Parul Garg et al. Relayed FSO communication with aperture averaging receivers and misalignment errors // IET Communications. 2017. V. 11. Iss. 1. P. 45–52.

18. Antonio García-Zambrana, Carmen Castillo-Vázquez, Beatriz Castillo-Vázquez. Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels // Optics express. 2011. V. 19. Iss. 14. P. 13480–13496.

19.  Nirzhar Saha, Md. Shareef Ifthekhar, Nam Tuan Le, Yeong Min Jang. Survey on optical camera communications: challenges and opportunities // Iet Optoelectronics. 2015. V. 9. Iss. 5. P. 172–183.

20. Trang Nguyen, Amirul Islam, Md. Tanveer Hossan, Yeong Min Jang. Current status and performance analysis of optical camera communication technologies for 5G networks // IEEE Access. 2017. V. 5. P. 4574–4594.

21.  Nam Le Tuan, Mohammad Arif Hossain, Yeong Min Jang. A survey of design and implementation for optical camera communication // Signal Processing: Image Communication. 2017. V. 53. P. 95–109.

22. Nasir Saeed, Shuaishuai Guo, Ki-Hong Park et al. Optical camera communications: survey, use cases, challenges, and future trends // Physical Communication. 2019. V. 37. P. 100900.

23. Weijie Liu, Zhengyuan Xu. Some practical constraints and solutions for optical camera communication // Philosophical Transactions of the Royal Society A. 2020. V. 378. 2169. P. 20190191.

24. Brian S. Leibowitz, Bernhard E. Boser, Kristofer SJ Pister. CMOS smart pixel for free-space optical communication // Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II. International Society for Optics and Photonics. 2001. V. 4306. P. 308–318.

25. Ashwin Ashok, Marco Gruteser, Narayan Mandayam et al. Challenge: Mobile optical networks through visual MIMO // Proceedings of the sixteenth annual international conference on Mobile computing and networking. 2010. P. 105–112.

26. Pengfei Luo, Min Zhang, Zabih Ghassemlooy et al. Experimental demonstration of RGB LED-based optical camera communications // IEEE Photonics Journal. 2015. V. 7. Iss. 5. P. 1–12.

27. Trang Nguyen, Amirul Islam, Takaya Yamazato et al. Technical issues on IEEE 802.15. 7m image sensor communication standardization // IEEE Communications Magazine. 2018. V. 56. Iss. 2. P. 213–218.

28. Wikipedia. IEEE 802.15. Wikimedia Foundation, 19 September 2018. Available online: https://en.wikipedia.org/wiki/IEEE_802.15 (accessed on 20 November 2020).

29. Pengfei Luo, Tong Jiang, Paul Anthony Haigh et al. Undersampled pulse width modulation for optical camera communications // IEEE International Conference on Communications Workshops (ICC Workshops). IEEE 2018. P. 1–6.

30. Vega Pradana Rachim, Wan-Young Chung. Multilevel intensity-modulation for rolling shutter-based optical camera communication // IEEE Photonics Technology Letters. 2018. V. 30. Iss. 10. P. 903–906.

31.  Peng Tian, Wei Huang, Zhengyuan Xu. Design and experimental demonstration of a real-time 95kbps optical camera communication system // 10th International Symposium on Communication Systems. Networks and Digital Signal Processing (CSNDSP). IEEE. 2016. P. 1–6.

32. Yuki Goto, Isamu Takai, Takaya Yamazato et al. A new automotive VLC system using optical communication image sensor // IEEE photonics Journal. 2016. V. 8. Iss. 3. P. 1–17.

33. Christos Danakis, Mostafa Afgani, Gordon Povey et al. Using a CMOS camera sensor for visible light communication // IEEE Globecom Workshops. IEEE. 2012. P. 1244–1248.

34. Tianxing Li, Chuankai An, Xinran Xiao et al. Real-time screen-camera communication behind any scene // Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services. 2015. P. 197–211.

35. Junhao Hu, Francois Chin Po Shin, Kwok Yuen Sam et al. LED-camera communication system with RGB coding // 2012 Photonics Global Conference (PGC). IEEE 2012. P. 1–4.

36. Sayaka Nishimoto, Tom Nagura, Takaya Yamazato et al. Overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera // 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE 2011. P. 1704–1709.

37. Anran Wang, Shuai Ma, Chunming Hu et al. Enhancing reliability to boost the throughput over screen-camera links // Proceedings of the 20th annual international conference on Mobile computing and networking. 2014. P. 41–52.

38. Anran Wang, Shuai Ma, Chunming Hu et al. Enhancing reliability to boost the throughput over screen-camera links // Proceedings of the 20th annual international conference on Mobile computing and networking. 2014. P. 41–52.

39. Wan Du, Jansen Christian Liando, Mo Li. Soft hint enabled adaptive visible light communication over screen-camera links // IEEE Transactions on Mobile Computing. 2016. V. 16. Iss. 2. P. 527–537.

40. Jin Shi, Jing He, Jing He et al. Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera // Optics Express. 2017. V. 25. Iss. 14. P. 15905–15912.

41.  Hualong Zhang, Chuanchuan Yang. Efficient coding and detection of ultra-long IDs for visible light positioning systems // Optics express. 2018. V. 26. Iss. 10. P. 13397–13407.

42. ISO I. IEC 18004: 2006 Information technology – Automatic identification and data capture techniques – QR Code 2005 bar code symbology specification. See https//www. sis. se/api/document/preview/911067 (2006).

43. Tian Hao, Ruogu Zhou, Guoliang Xing. COBRA: color barcode streaming for smartphone systems //Proceedings of the 10th international conference on Mobile systems, applications, and services. 2012. P. 85–98.

44. Wenjia Yuan, Kristin Dana, Ashwin Ashok et al. Dynamic and invisible messaging for visual MIMO // 2012 IEEE Workshop on the Applications of Computer Vision (WACV). IEEE 2012. P. 345–352.

45. Viet Nguyen, Yaqin Tang, Ashwin Ashok et al. High-rate flicker-free screen-camera communication with spatially adaptive embedding // IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. IEEE, 2016. P. 1–9.

46. Zanyang Dong, Tao Shang, Yan Gao et al. Study on VLC channel modeling under random shadowing // IEEE Photonics Journal. 2017. V. 9. Iss. 6. P. 1–16.

47. Yang Xiang, Min Zhang, Mohsen Kavehrad et al. Human shadowing effect on indoor visible light communications channel characteristics. // Optical Engineering. 2014. V. 53. Iss. 8. P. 086113.

48. Wei-Chung Wang, Chi-Wai Chow, Liang-Yu Wei et al. Long distance non-line-of-sight (NLOS) visible light signal detection based on rolling-shutter-patterning of mobile-phone camera // Optics Express. 2017. V. 25. Iss. 9. P. 10103–10108.

49. Navid Bani Hassan, Zabih Ghassemlooy, Stanislav Zvanovec et al. Non-line-of-sight 2ґN indoor optical camera communications // Applied Optics. 2018. V. 57. Iss. 7. P. B144–B149.

50. Weijie Liu, Zhengyuan Xu. Predicted and experimental performance of a long distance non-line of sight image sensor communication system // IEEE International Conference on Communications Workshops (ICC Workshops). IEEE. 2018. P. 1–6.

51.  Shivani Teli, Willy Anugrah Cahyadi, Yeon Ho Chung. High-speed optical camera V2V communications using selective capture // Photonic Network Communications. 2018. V. 36. Iss. 2. P. 210–216.

52. Shivani Teli, Yeon-Ho Chung. Selective capture based high-speed optical vehicular signaling system // Signal Processing: Image Communication. 2018. V. 68. P. 241–248.

53. Isamu Takai, Tomohisa Harada, Michinori Andoh et al. Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver // IEEE Photonics Journal. 2014. V. 6. Iss. 5. P. 1–14.

54. Takaya Yamazato. V2X communications with an image sensor // Journal of Communications and Information Networks. 2017. V. 2. Iss. 4. P. 65–74.

55. Phillip W. Ward, John W. Betz, Christopher J. Hegarty. Satellite signal acquisition, tracking, and data demodulation // Understanding GPS: Principles and Applications. 2006. P. 153–241.

56. Weizhi Zhang, M.I. Sakib Chowdhury, Mohsen Kavehrad. Asynchronous indoor positioning system based on visible light communications. // Optical Engineering. 2014. V. 53. Iss. 4. P. 045105.

57. Phat Huynh, Myungsik Yoo. VLC-based positioning system for an indoor environment using an image sensor and an accelerometer sensor // Sensors. 2016. V. 16. Iss. 6. P. 783.

58. Junhai Luo, Liying Fan, Husheng Li. Indoor positioning systems based on visible light communication: State of the art // IEEE Communications Surveys & Tutorials. 2017. V. 19. Iss. 4. P. 2871–2893.

59. Bangjiang Lin, Zabih Ghassemlooy, Chun Lin et al. An indoor visible light positioning system based on optical camera communications // IEEE Photonics Technology Letters. 2017. V. 29. Iss. 7. P. 579–582.

60. Shingo Yoshizawa, Shiro Handa, Fumihito Sasamori et al. A simple but effective approach for visible light beacon-based positioning systems with smartphone // 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA). IEEE 2016. P. 32–35.

61.  Trong-Hop Do, Myungsik Yoo. An in-depth survey of visible light communication based positioning systems // Sensors. 2016. V. 16. Iss. 5. P. 678.

62. Patricia Chavez-Burbano, Victor Guerra, Jose Rabadan et al. Optical Camera Communication system for three-dimensional indoor localization // Optik. 2019. V. 192. P. 162870.

63. Md. Tanveer Hossan, Mostafa Zaman Chowdhury, Amirul Islam et al. A novel indoor mobile localization system based on optical camera communication // Wireless Communications and Mobile Computing. 2018. V. 2018.

64. NTT Technical Review. Available online: https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201707ra1.html (accessed on 28 November 2020). 2020. V. 15. P. 1–5.

65. Vega Pradana Rachim, An Jinyoung, Quan Ngoc Pham et al. RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications // Sensor Science and Technology. 2018. V.  27. Iss. 1. P. 6–12.

66. Mostafa Zaman Chowdhury, Md. Tanveer Hossan, Md. Shahjalal et al. A new 5G health architecture based on Optical Camera Communication: An overview, prospects, and applications // IEEE Consumer Electronics Magazine. 2020. V. 9. Iss. 6. P. 23–33.

67. Hidayet Aksu, Leonardo Babun, Mauro Conti et al. Advertising in the IoT era // Vision and challenges. IEEE Communications Magazine. 2018.  V. 56. Iss. 11. P. 138–144.

68. Van Hoa, Huy Nguyen, Cong Hoan Nguyen et al. OCC Technology-based developing IoT network // 2020 International Conference on Information and Communication Technology Convergence (ICTC). IEEE. 2020. P. 670–673.

69. Yiming Huo, Xiaodai Dong, Tao Lu et al. Distributed and multilayer UAV networks for next-generation wireless communication and power transfer: A feasibility study // IEEE Internet Things J. 2019. V. 6. Iss. 4. P. 7103–7115.

70. Patricia Chavez-Burbano, Stanislav Vitek, Shivani Rajendra Teli et al. Optical camera communication system for Internet of Things based on organic light emitting diodes // Electronics Letters. 2019. V. 55. Iss. 6. P. 334–336.

71.  Nguyen Cong Hoan, Nguyen Van Hoa, Vu Thanh Luan et al. Design and implementation of a monitoring system using optical camera communication for a smart factory // Applied Sciences. 2019. V. 9. Iss. 23. P. 5103.

72. Trong-Hop Do, Myungsik Yoo. The necessity of LED to ambient light ratio optimization for vehicular optical camera communication // Sensors. 2020. V. 20. Iss. 1. P. 292.

73. Hao-Wei Chen, Shang-Sheng Wen, Yun Liu et al. Optical camera communication for mobile payments using an LED panel light // Applied Optics. 2018. V. 57. Iss. 19. P. 5288–5294.

74. Shivani Teli, Willy Anugrah Cahyadi, Yeon Ho Chung. Optical camera communication: Motion over camera // IEEE Communications Magazine. 2017. V. 55. Iss. 8. P. 156–162.

75. Patricia Chavez-Burbano, Victor Gherra, Rafael Perez Jimenez et al. Optical camera communication for smart cities // 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops). IEEE 2017. P. 1–4.

76. Behnaz Majlesein, Julio Rufo, Daniel Moreno et al. Underwater optical camera communications based on a multispectral camera and spectral variations of the LED emission // Proceedings of the Workshop on Light Up the IoT. 2020. P. 30–35.

77.  Alex Duque, Razvan Stanica, Harve Rivano et al. CamComSim: A LED-to-camera communication simulator // Publications, software of Inria’s scientists. 2017. V. 1. P. 1–15.

78. Yanbing Yang, Jie Hao, Jun Luo. CeilingTalk: Lightweight indoor broadcast through LED-camera communication // IEEE Transactions on Mobile Computing. 2017. V. 16. Iss. 12. P. 3308–3319.

79. Takaya Yamazato, Ohmura A., Okada H. et al. Range estimation scheme for integrated I2V-VLC using a high-speed image sensor // 2016 IEEE International Conference on Communications Workshops (ICC). IEEE 2016. P. 326–330.

80. Mohsan S.A.H., Amjad H. A comprehensive survey on hybrid wireless networks: practical considerations, challenges, applications and research directions // Optical and Quantum Electronics. 2021. V. 53(9). P. 1–56. 

81. Duy Thong Nguyen, Park S., Chae Y. et al. VLC/OCC hybrid optical wireless systems for versatile indoor applications // IEEE Access 7. 2019. P. 22371–22376.

82. Wei Huang, Peng Tian, Zhengyuan Xu. Design and implementation of a real-time CIM–MIMO optical camera communication system // Optics Express. 2016. V. 24. Iss. 21. P. 24567–24579.

83. Jum Han Bae, Nam Tuan Le, Jong Tae Kim et al. Smartphone image receiver architecture for optical camera communication // Wireless Personal Communications. 2017. V. 93. P. 1043–1066.

84. Amirul Islam, Md Tanvir Hossan, Yeong Min Jang. Introduction of optical camera communication for internet of vehicles (IoV) // 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE. P. 122–125.

85. Nam-Tuan Le, Jang Yeong Ming. MIMO architecture for optical camera communications // The J. of the Korean Institute of Commun. Sci. 2017. V. 42. Iss. 1. P. 8–13.

86. Duy Thong Nguyen, Yoonsung Chae, Youngil Park. Enhancement of data rate and packet size in image sensor communications by employing constant power 4-PAM // IEEE Access. 2018. V. 6. P. 8000–8010.

87. Pengfei Luo, Min Zhang, Zabih Ghassemlooy et al. Undersampled-based modulation schemes for optical camera communications // IEEE Communications Magazine. 2018. V. 56. Iss. 2. P. 204–212.

88. Mostafa Zaman Chowdhury, Md. Tanveer Hossan, Amirul Islam et al. A comparative survey of optical wireless technologies: Architectures and applications // IEEE Access. 2018. V. 6. P. 9819–9840.

89. Moh. Khalid Hasan, Mostafa Zaman Chowdhury, Shahjalal Md. et al. Performance analysis and improvement of optical camera communication // Applied Sciences. 2018. V. 8. Iss. 12. P. 2527.

90. Ke Yu, Jing He, Zheng Huang. Decoding scheme based on CNN for mobile optical camera communication // Applied Optics. 2020. V. 59. Iss. 23. P. 7109–7113.

91.  Duque Alexis, Razvan Stanica, Herve Rivano et al. Analytical and simulation tools for optical camera communications // Computer Communications. 2020. V. 160. P. 52–62.

92. Shih-Hao Chen, Chi-Wai Chow. Single-input multiple-output visible light optical wireless communications supporting quality of service // Electronics Letters. 2015. V. 51. Iss. 5. P. 406–408.

93. Joon-Woo Lee, Se-Hoon Yang, Sang-Kook Han. Optical pulse width modulated multilevel transmission in CIS-based VLC // IEEE Photonics Technology Letters. 2017. V. 29. Iss. 15. P. 1257–1260.

94. Shih-Hao Chen, Chi-Wai Chow. Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera // IEEE Photonics Journal. 2014. V. 6. Iss. 6. P. 1–6.

95. Jie Hao, Yanbing Yang, Jun Luo. CeilingCast: Energy efficient and location-bound broadcast through LED-camera communication // IEEE INFOCOM 2016. The 35th Annual IEEE International Conference on Computer Communications. IEEE 2016. P. 1–9.

96. Pengfei Luo, Zabih Ghassemlooy, Hoa Le Minh et al. Undersampled phase shift ON-OFF keying for camera communication // Sixth International Conference on Wireless Communications and Signal Processing (WCSP). IEEE 2014. P. 1–6.

97. Peng Ji, Hsin-Mu Tsai, Chao Wang et al. Vehicular visible light communications with LED taillight and rolling shutter camera // IEEE 79th Vehicular Technology Conference (VTC Spring). IEEE 2014. P. 1–6.

98. Samuel David Perli, Nabil Ahmed, Dina Katabi et al. PixNet: Interference-free wireless links using LCD-camera pairs // Proceedings of the sixteenth annual international conference on Mobile computing and networking. 2010. P. 137–104

99.      Ashwin Ashok, Shubham Jain, Marco Gruteser et al. Capacity of pervasive camera based communication under perspective distortions // 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE 2014. P. 112–120.

 

 

Полный текст