Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (02.2022) : Fiber Bragg grating security fence with temperature compensation based on tilted cantilever beam

Fiber Bragg grating security fence with temperature compensation based on tilted cantilever beam

DOI: 10.17586/1023-5086-2022-89-02-52-59

 

Mahdi Gholampour1, Mohsen Mansoursamaei2, Abdollah Malakzadeh3, Mohammad Nikosefat4

1Imam Ali University, Physics Group, Basic Sciences Department, Tehran, Iran

2, 3, 4Imam Hossein University, Photonics Group, Basic Sciences Department, Tehran, Iran

Corresponding author: mohsen.m.samae@gmail.com

Аnnotation

Fibre Bragg grating was one of the most widely used sensors in the field of optical fibre sensors in recent years. Significant progress has been made in fibre Bragg grating sensor applications to measurement of environmental parameters such as strain and temperature. Fibre Bragg grating is sensitive to the temperature as well when it is measuring the strain change, which is ignored in most measurement applications, including perimeter protection sensors. Since fibre Bragg grating is affected by both strain and temperature changes, cross-sensitivity compensation is required to accurately measurement and reduce noise. In this paper, a novel intrusion detection technique is proposed based on tilted cantilever beam which is very effective for temperature compensation in fibre Bragg grating-based security fences. With this technique, temperature and strain can be measured simultaneously and completely independently of each other. For this work, we place a ramp with an angle of q, similar to a tilted cantilever beam, on the fence and stick a fibre Bragg grating on the ramp. A uniform strain applied to the fence, creates a strain gradient along the cantilever beam and of course along the fibre Bragg grating causing a change in the full width at half maximum of reflection spectrum. This the full width at half maximum change besides the Bragg wavelength shift are used to obtain simultaneously strain and temperature. In our simulation results, temperature sensitivity of the fibre Bragg grating is 14.2 pm/°С for Bragg wavelength with no change in the FWHM and strain sensitivity is 0.453 pm/me for Bragg wavelength and a nonlinear sensitivity according to a quadratic function for the full width at half maximum variation.

Keywords: fiber Bragg grating, fibre Bragg grating sensor, security fence, cantilever beam, temperature compensation

For citation: Mahdi Gholampour, Mohsen Mansoursamaei, Abdollah Malakzadeh, Mohammad Nikosefat.  Fiber Bragg grating security fence with temperature compensation based on tilted cantilever beam // Оптический журнал. 2022. Т. 89. № 2. С. 52–59. DOI: 10.17586/1023-5086-2022-89-02-52-59

OCIS codes: 060.2370, 060.4370, 060.2300

Волоконно-оптический брэгговский датчик с температурной компенсацией на наклонной консольной балке для системы охраны

Mahdi Gholampour, Mohsen Mansoursamaei, Abdollah Malakzadeh, Mohammad Nikosefat

Аннотация

В последние годы волоконные брэгговские решётки (ВБР) — основа для широко используемых типов оптоволоконных датчиков. Значительный прогресс был достигнут в области применения ВБР-датчиков для измерения таких параметров окружающей среды, как деформация и температура, которые игнорируется в большинстве измерительных приложений, включая датчики защиты периметра. Поскольку на ВБР влияют оба эти фактора, для точного измерения и снижения шума требуется компенсация перекрёстной чувствительности. Предлагается новый метод обнаружения вторжений за периметр, основанный на использовании наклонной консольной балки. Этот метод эффективен для температурной компенсации в датчиках защитных ограждениях на основе ВБР. Возможно измерение температуры и деформации одновременно и полностью независимо друг от друга. На ограде укрепляется наклонная консольная балка с приклеенным к ней ВБР-датчиком. Равномерная деформация, приложенная к ограждению, создаёт градиент деформации вдоль балки консоли и датчика ВБР, вызывая изменение полуширины спектра отражения решётки. Это изменение, вместе с происходящим брэгговским сдвигом длины волны отражения, используется для одновременного получения данных о деформации и температуре. Получена температурная чувствительность датчика, составляющая 14,2 пм/°С при неизменной полуширине брэгговского спектра отражения, и чувствительность к деформации 0,453 пм/мкe для изменения длины волны Брэгга и при квадратично-нелинейной чувствительности для изменения ширины спектра отражения.

Ключевые слова: волоконная решётка Брэгга, датчик на основе волоконной решётки Брэгга, защитное ограждение, консольная балка, температурная компенсация

 

References 

1.    Bao X., Chen L. Recent progress in distributed fiber optic sensors // Sensors. 2012. V. 12(7). P. 8601–8639.

2.   Malakzadeh A., Mansoursamaei M., Pashaie R. A novel technique in BDG sensors: combination of phase and frequency correlation techniques // Optical and Quantum Electronics. 2020. V. 52(9). P. 1–10.

3.   Wu H., Rao Y., Tang C. et al. A novel FBG-based security fence enabling to detect extremely weak intrusion signals from nonequivalent sensor nodes // Sensors and Actuators A: Physical. 2011. V. 167(2). P. 548–555.

4.   Malakzadeh A., Mansoursamaei M. New matrix solution of the phase-correlation technique in a Brillouin dynamic grating sensor // Journal of Optical Technology. 2018. V. 85(10). P. 644–647.

5.   Allwood G., Wild G., Hinckley S. Optical fiber sensors in physical intrusion detection systems: A review // IEEE Sensors Journal. 2016. V. 16(14). P. 5497–5509.

6.   Wu H., Qian Y., Zhang W. et al. Intelligent detection and identification in fiber-optical perimeter intrusion monitoring system based on the FBG sensor network // Photonic Sensors. 2015. V. 5(4). P. 365–375.

7.    Malakzadeh A., Pashaie R., Mansoursamaei M. Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs // Optical and Quantum Electronics. 2020. V. 52(2). P. 1–16.

8.   Malakzadeh A., Pashaie R., Mansoursamaei M. 150 km j-OTDR sensor based on erbium and Raman amplifiers // Optical and Quantum Electronics. 2020. V. 52(6). P. 1–8.

9.   Kizlik B. Fiber optic distributed sensor in Mach-Zehnder interferometer configuration. In Modern Problems of Radio Engineering // Telecommunications and Computer Science (IEEE Cat. No. 02EX542). 2002. P. 128–130.

10. Chtcherbakov A.A., Swart P.L. Polarization effects in the Sagnac-Michelson distributed disturbance location sensor // Journal of Lightwave Technology. 1998. V. 16(8). P. 1404.

11.  Campanella C.E., Cuccovillo A., Campanella C., Yurt A. et al. Fiber Bragg grating based strain sensors: review of technology and applications // Sensors. 2018. V. 18(9). P. 3115.

12.  Allwood G., Hinckley S., Wild G. Optical Fiber Bragg grating based intrusion detection systems for homeland security // In 2013 IEEE Sensors Applications Symposium Proceedings. 2013. P. 66–70.

13.  Li T., Tan Y., Zhou Z., Zheng K. A non-contact FBG vibration sensor with double differential temperature compensation // Optical Review. 2016. V. 23(1). P. 26–32.

14.  Saleh C., Mohsen M. FBG security fence for intrusion detection // In 2017 International Conference on Engineering & MIS (ICEMIS). 2017. P. 1–5.

15.  Qi Y., Jia C., Tang L. et al. Simultaneous measurement of temperature and humidity based on FBG-FP cavity // Optics Communications. 2019. V. 452. P. 25–30.

16.  Schott B., Parker R. Defense applications for large numbers of distributed small sensors // IEEE MTT-S International Microwave Symposium Digest. 2005. P. 369–372.

17.  Chen J., Liu B., Zhang H. Review of fiber Bragg grating sensor technology // Frontiers of Optoelectronics in China. 2011. V. 4(2). P. 204–212.

18. Sahota J.K., Gupta N., Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review // Optical Engineering. 2020. V. 59(6). P. 060901.

19.  Ferreira L.A.A., Araujo F.M., Santos J.L. et al. Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors // Optical Engineering. 2000. V. 39(8). P. 2226–2234.

20. Mizunami T., Yamada T., Tsuchiya S. Interrogation of fiber-Bragg-grating temperature and strain sensors with a temperature-stabilized VCSEL // Optical Review. 2016. V. 23(5). P. 703–707.

21.  Gao X., Ning T., Zhang C. et al. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing // Optics Communications. 2020. V. 454. P. 124441.

22. Guo K., He J., Shao L. et al. Simultaneous measurement of strain and temperature by a sawtooth stressor-assisted highly birefringent fiber Bragg grating // Journal of Lightwave Technology. 2020. V. 38(7). P. 2060–2066.

23. Tian J., Jiao Y., Ji S. et al. Cascaded-cavity Fabry–Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation // Optics Communications. 2018. V. 412. P. 121–126.

24. Jiang N., Zhu H., Bao K. et al. Simultaneous discrimination of strain and temperature using dual-gratings in one fiber // Optik. 2015. V. 126(23). P. 3974–3977.

25. Tao S., Dong X., Lai B. A sensor for simultaneous measurement of displacement and temperature based on the Fabry–Perot effect of a fiber Bragg grating // IEEE Sensors Journal. 2016. V. 17(2). P. 261–266.

26. Song M., Lee B., Lee S B. et al. Interferometric temperature-insensitive strain measurement with different-diameter fiber Bragg gratings // Optics letters. 1997. V. 22(11). P. 790–792.

27. Iwashima T., Inoue A., Shigematsu M. et al.Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes // Electronics letters. 1997. V. 33(5). P. 417–419.

28. Chang H Y., Yeh C H., Huang C Y. et al. In-fiber long-period grating and fiber bragg grating-based sensor for simultaneously monitoring remote temperature and stress // Sensors and Materials. 2018. V. 30(1). P. 23–32.

29. Kang Z., Sun J., Bai Y. et al. Twin-core fiber-based erbium-doped fiber laser sensor for decoupling measurement of temperature and strain // IEEE Sensors Journal. 2015. V. 15(12). P. 6828–6832.

30. Li C., Ning T., Li J. et al. Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating // Optics & Laser Technology. 2017. V. 90. P. 179–184.

31.  Guo T., Zhang T., Qiao X. FBG-EFPI sensor for large strain measurement with low temperature crosstalk // Optics Communications. 2020. P. 125945.

32. Guan B.O., Tam H.Y., Tao X.M. et al. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating // IEEE Photonics Technology Letters. 2000. V. 12(6). P. 675–677.

33. Sampath U., Kim D., Kim H. et al. Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions // Applied optics. 2018. V. 57(3). P. 492–497.

34. Qazi H.H., Mohammad A.B., Ahmad H. et al. D-shaped polarization maintaining fiber sensor for strain and temperature monitoring // Sensors. 2016. V. 16(9). P. 1505.

35. Lv L., Wang S., Jiang L. et al. Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating // Applied optics. 2015. V. 54(36). P. 10678–10683.

36. Liu H., Yang H Z., Qiao X. et al. Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating // Sensors and Actuators A: Physical. 2016. V. 248. P. 199–205.

37. Kouhrangiha F., Kahrizi M., Khorasani K. Structural health monitoring using apodized pi-phase shifted FBG: Decoupling strain and temperature effects // 2019 IEEE SENSORS. IEEE. 2019. P. 1–4.

38. Jiang Y., Liu C., Zhang W. et al. Multi-parameter sensing using a fiber Bragg grating inscribed in dual-mode fiber // IEEE Photonics Technology Letters. 2017. V. 29(19). P. 1607–1610.

39. Liu W., Li W., Yao J. Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature // IEEE Photonics Technology Letters. 2011. V. 23(18). P. 1340–1342.

40. He X.L., Wang D H., Wang X B., et al. A cascade fiber optic sensors for simultaneous measurement of strain and temperature // IEEE Sensors Letters. 2019. V. 3(11). P. 1–4.

41.  Her S.C., Lin W.N. Simultaneous measurement of temperature and mechanical strain using a fiber Bragg grating sensor // Sensors. 2020. V. 20(15). P. 4223.

42. Sarkar S., Tarhani M., Khosravi Eghbal M. et al. Discrimination between strain and temperature effects of a single fiber Bragg grating sensor using sidelobe power // Journal of Applied Physics. 2020. V. 127(11). P. 114503.

43. Mizutani Y., Groves R.M. Multi-functional measurement using a single FBG sensor // Experimental mechanics. 2011. V. 51(9). P. 1489–1498.

44. Du J., He Z. Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification // Optics Express. 2013. V. 21(22). P. 27111–27118.

45. Ling H.Y., Lau K.T., Cheng L. et al. Embedded fiber Bragg grating sensors for non-uniform strain sensing in composite structures // Measurement science and technology. 2005. V. 16(12). P. 2415.

46.      Jin L., Zhang W., Li J. et al. Two-dimensional bend sensing with a cantilever-mounted FBG // Measurement Science and Technology. 2005. V. 17(1). P. 168.

 

 

Полный текст