DOI: 10.17586/1023-5086-2023-90-02-37-45
Лазерные диоды коротковолнового ультрафиолетового излучения на основе нитрида алюминия-галлия с пониженным содержанием алюминия в квантовом барьере
Sajid Ullah Khan1, Wang Yao2, Fang Wang3, Yuhuai Liu4*
1, 2, 3, 4National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
3, 4Research Institute of Sensors, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
3, 4Zhengzhou Way Do Electronics Co. Ltd., Zhengzhou, Henan 450001, P. R. China
3, 4Research Institute of Industrial Technology Co. Ltd., Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
1itssukhan@gmail.com https://orcid.org/0000-0003-2734-8835
23131458198@qq.com https://orcid.org/0000-0002-4315-7951
3iefwang@zzu.edu.cn https://orcid.org/0000-0002-9203-3103
4ieyhliu@zzu.edu.cn https://orcid.org/0000-0003-3426-2861
Аннотация
Предмет исследования. Влияние концентрации алюминия в квантовом барьере на энергетическую эффективность лазерных диодов на основе нитрида алюминия-галлия, излучающих в коротковолновой части ультрафиолетовой области спектра. Метод. Компьютерное моделирование с помощью Программы Интеграции Лазерных Технологий корпорации Crosslight Software излучательной способности лазерного диода коротковолнового ультрафиолетового излучения с номинальной длиной волны 267,5 нм. Сравнение результатов моделирования двух лазерных диодов на основе нитрида алюминия-галлия: предлагаемого диода с уменьшенным содержанием алюминия в квантовом барьере и лазерного диода с традиционным содержанием алюминия. Критерии сравнения — энергетическая эффективность, степень повышения высоты барьера зоны проводимости, уменьшение высоты барьера валентной зоны, увеличение скорости стимулированной рекомбинации. Основные результаты. Установлено увеличение излучаемой выходной мощности на 0,109 Вт при уменьшенном токе инжекции на 0,02 А и увеличение коэффициента оптического удержания на 19% при рассмотренном уменьшении содержания алюминия в квантовом барьере. Практическая значимость. Доказано улучшение характеристик лазерного диода коротковолнового ультрафиолетового излучения на основе нитрида алюминия-галлия при уменьшении содержания алюминия в квантовом барьере. На основе оптимальных значений параметров, полученных в результате компьютерного моделирования возможна практическая реализация лазерных диодов с предложенной структурой.
Ключевые слова: лазерный диод коротковолнового ультрафиолетового излучения, оптическая мощность, содержание алюминия, квантовые барьеры, оптическое ограничение
Благодарность: это исследование финансировалось Национальным фондом естественных наук Китая (Грант № 62174148), Национальной программы ключевых исследований и разработок (Грант NHRDP № 2022YFE0112000, грант № 2016YFE0118400), Инновационный проект Чжэнчжоу 1125 (грант № ZZ2018-45) и Ключевого инновационного проекта Ningbo 2025 (грант № 2019B10129). Грант был выдан нашему научному наставнику профессору Юхуа Лю.
Ссылка для цитирования: Sajid Ullah Khan, Wang Yao, Fang Wang, Yuhuai Liu. AlGaN-based laser diodes with reduced Al composition in Quantum Barriers in the Deep ultraviolet region (Лазерные диоды коротковолнового ультрафиолетового излучения на основе нитрида алюминия-галлия с пониженным содержанием алюминия в квантовом барьере) [на англ. языке] // Оптический журнал. 2023. Т. 90. № 2. С. 37–45. http://doi.org/10.17586/1023-5086-2023-90-02-37-45
Коды OCIS: 140.3610 , 130.5990, 040.4200, 170.4520.
Abstract
Subject of Study. In AlGaN-based deep ultraviolet laser diodes, quantum well affects the performance in the active region of the deep ultraviolet laser diodes. Moreover, the composition of Aluminum in Quantum Barriers in quantum well matters to the performance of AlGaN-based deep ultraviolet laser diodes. It might be observed effectively, by looking at performance indicators like the emitted power, optical confinement factor (band diagram, carrier concentration, and stimulated recombination). Method. Two deep ultraviolet laser diode devices with a nominated wavelength of 267.5 nm are simulated and compared in this paper using the Crosslight program LASTIP. A proposed deep ultraviolet laser diode device В with a reduced Al composition in quantum barrier is used in the active region as opposed to the reference deep ultraviolet laser diode device А. Main Results. It led to an improvement in emitted output power of 0.109 W with a reduced injection current of 0.02 A and an improvement in optical confinement factor of 19%. Practical significance. The structure of the reference device is inspired by experimental structure. The results of the proposed device are calculated and are evaluated based on the parameters such as improved conduction band barrier height, reduced valence band barrier height, and an improved stimulated recombination rate. It outperforms the deep ultraviolet laser diode for the reference device.
Keywords: deep ultraviolet laser diode, optical power, Al composition, quantum barriers, optical confinement
Acknowledgment: this research was funded by the National Nature Science Foundation of China (Grant No. 62174148), National Key Research and Development Program (NKRDP Grant No. 2022YFE0112000, Grant No. 2016YFE0118400), Zhengzhou 1125 Innovation Project (Grant No. ZZ2018-45), and Ningbo 2025 Key Innovation Project (Grant No. 2019B10129). The grant was issued to our research mentor Professor Yuhuai Liu.
For citation: Sajid Ullah Khan, Wang Yao, Fang Wang, Yuhuai Liu. AlGaN-based laser diodes with reduced Al composition in Quantum Barriers in the Deep ultraviolet region (Лазерные диоды коротковолнового ультрафиолетового излучения на основе нитрида алюминия-галлия с пониженным содержанием алюминия в квантовом барьере [in English] // Opticheskii Zhurnal. 2023. V. 90. № 2. P. 37–45. http://doi.org/10.17586/1023-5086-2023-90-02-37-45
OCIS сodes: 140.3610 , 130.5990, 040.4200, 170.4520
REFERENCES
1. Yun-Fei S., Zhen-Fu W., Te L., Guo-Wen Y. Efficiency analysis of 808 nm laser diode array under different operating temperatures // Acta Phys. Sin. 2017. V. 66. № 10. P. 104202. http://doi.org/10.7498/aps.66.104202
2. Grandusky J.R., Gibb S.R., Mendrick M.C., Moe C., Wraback M., Schowalter L.J. High output power from 260 nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance // Applied physics express. 2011. |V. 4. № 8. P. 082101. http://doi.org/10.1143/APEX.4.082101
3. Wang W., Liao M., Yuan J., Luo S. Effects of composition-graded AlGaN/GaN/AlGaN electron blocking layer on photoelectric performance in InGaN laser diodes // Optoelectronics and Nanophotonics; and Quantum Information Technology. 2020. V. 11564. P. 28–33. http://doi.org/10.1117/12.2579741
4. Sharif M.N., Niass M.I., Liou J.J., Wang F., Liu Y. The effects of AlGaN quantum barriers on carrier flow in deep ultraviolet nanowire laser diode // Semiconductor Science and Technology. 2021. V. 36. № 5. P. 055017. http://doi.org/10.1088/1361-6641/abeff6
5. Sharif M.N., Khan M.A., Wali Q., Demir I., Wang F., Liu Y. Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers // Optics & Laser Technology. 2022. V. 152. P. 108156. http://doi.org/10.1016/j.optlastec.2022.108156
6. Kuo Y.K., Chen F.M., Chang J.Y., Shih Y.H. Structural design and optimization of near-ultraviolet light-emitting diodes with wide wells // Journal of Applied Physics. 2016. V. 119. № 9. P. 094503. http://dx.doi.org/10.1063/1.4942922
7. Khan S.U., Nawaz S.M., Niass M.I., Wang F., Liu Y. Effects of the stepped-doped lower waveguide and a doped p-Cladding layer on AlGaN-based deep-ultraviolet laser diodes // Journal of Russian Laser Research. 2022. V. 3. № 3. P. 1–8. http://doi.org/10.1007/s10946-022-10061-2
8. Li K., Zeng N., Liao F., Yin Y. Investigations on deep ultraviolet light-emitting diodes with quaternary AlInGaN streamlined quantum barriers for reducing polarization effect // Superlattices and Microstructures. 2022 V. 145. P. 106601. http://doi.org/10.1016/j.spmi.2020.106601
9. Zhang Y., Kao T.T., Liu J., Lochner Z., Kim S.S., Ryou J.H., Shen S.C. Effects of a step-graded AlxGa1–xN electron blocking layer in InGaN-based laser diodes // Journal of Applied Physics. 2011. V. 109. № 8. P. 083115. http://doi.org/10.1063/1.3581080
10. Lee S.N., Cho S.Y., Ryu H.Y., Son J.K., Paek H.S., Sakong T., Yoon E. High-power GaN-based blue-violet laser diodes with AlGaN∕GaN multiquantum barriers // Applied physics letters. 2006. V. 88. № 11. P. 111101. http://doi.org/10.1063/1.2185251
11. Xing Y., Zhao D.G., Jiang D.S., Li X., Liu Z.S., Zhu J.J., Du G.T. Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes // Chinese Physics B. 2018. V. 27. № 2. P. 028101. http://doi.org/10.1088/1674-1056/27/2/028101
12. Amano H., Collazo R., De Santi C., Einfeldt S., Funato M., Glaab J., Zhang Y. The 2020 UV emitter roadmap // Journal of Physics D: Applied Physics. 2020. V. 53. № 50. P. 503001. http://doi.org/10.1088/1361-6463/aba64c
13. Stratton R. Diffusion of hot and cold electrons in semiconductor barriers // Physical Review. 1962. V. 126. № 6. P. 2002. http://doi.org/10.1103/PhysRev.126.2002
14. Gaur S.P., Navon D.H. Two-dimensional carrier flow in a transistor structure under nonisothermal conditions // IEEE Transactions on Electron Devices. 1976. V. 23. № 1. P. 50–57. http://doi.org/10.1109/T-ED.1976.18346
15. Huang Y.Z., Pan Z., Wu R.H. Analysis of the optical confinement factor in semiconductor lasers // Journal of applied physics. 1996. V. 79. № 8. P. 3827–3830. http://doi.org/10.1063/1.361809
16. Martín J., Sánchez M. Confinement factor, near and far field patterns in InGaN MQW laser diodes // Physica status solidi (b). 2005. V. 242. № 9. P. 1846–1849. http://doi.org/10.1002/pssb.200461774
17. Zhang Z.H., Kou J., Chen S.W.H., Shao H., Che J., Chu C., Kuo H.C. Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes // Photonics Research. 2019. V. 7. № 4. P. B1–B6. http://doi.org/10.1364/PRJ.7.0000B1
18. Yu H., Chen Q., Ren Z., Tian M., Long S., Dai J., Sun H. Enhanced performance of an AlGaN-based deep-ultraviolet LED having graded quantum well structure // IEEE Photonics Journal. 2019. V. 11. № 4. P. 1–6. http://doi.org/10.1109/JPHOT.2019.2922280
19. Nguyen H.P.T., Djavid M., Woo S.Y., Liu X., Connie A.T., Sadaf S., Mi Z. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers // Scientific reports. 2015. V. 5. № 1. P. 1–7. http://doi.org/10.1038/srep07744
20. Jain B., Velpula R.T., Bui H.Q.T., Nguyen H.D., Lenka T.R., Nguyen T.K., Nguyen H.P.T. High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes // Optics express. 2020. V. 28. № 1. P. 665–675. http://doi.org/10.1364/OE.28.000665
Полный текст