Научно-технический
«ОПТИЧЕСКИЙ ЖУРНАЛ»
издается с 1931 года
 
   
Русский вариант сайта Английский вариант сайта
   
       
   
       
Статьи последнего выпуска

Электронные версии
выпусков начиная с 2008


Алфавитный указатель
2000-2010 гг


444
Архив оглавлений
выпусков 2002-2007 гг


Реквизиты и адреса

Вниманию авторов и рецензентов!
- Порядок публикации
- Порядок рецензирования статей
- Типовой договор
- Правила оформления
- Получение авторского вознаграждения
- Редакционная этика


Контакты

Подписка

Карта сайта




Журнал с 01.12.2015 допущен ВАК для публикации основных результатов диссертаций как издание, входящее в международные реферативные базы систем цитирования (Web Science, Scopus) (см. Vak.ed.gov.ru Перечень журналов МБД 16.03.2018г)

Аннотации (05.2023) : Мультиплицирование гауссова пучка многосекторной бинарной фазовой пластиной в скалярные вихревые пучки для лазерной микрообработки

Мультиплицирование гауссова пучка многосекторной бинарной фазовой пластиной в скалярные вихревые пучки для лазерной микрообработки

DOI: 10.17586/1023-5086-2023-90-05-93-103

УДК 535.015; 537.312.52; 544.537

Виктория Александровна Шкуратова1*, Галина Кирилловна Костюк2, Андрей Анатольевич Петров3, Дмитрий Сергеевич Степанюк4, Никита Алексеевич Нестеров5, Антон Александрович Сеннов6

Университет ИТМО, Санкт-Петербург, Россия

1shkuratova_va@mail.ru      https://orcid.org/0000-0002-0570-3173

2gkkostiuk@itmo.ru               https://orcid.org/0000-0002-7998-1686

3aapetrov@itmo.ru                 https://orcid.org/ 0000-0002-2853-6478

4dmitriy.stepanyuk.234@mail.ru           https://orcid.org/0000-0002-8603-3377

5nkt.nesterov@mail.ru           https://orcid.org/0000-0001-8111-6870

6daarraak111@gmail.com     https://orcid.org/0000-0001-7769-57931

Аннотация

Предмет исследования. Метод мультиплицирования гауссовых лазерных пучков в скалярные вихревые пучки с применением многосекторных бинарных фазовых пластин, способный повысить скорость и производительность лазерной микрообработки. Цель работы — применение технологии структурирования прозрачных диэлектриков лазерно-индуцированной микроплазмой для изготовления многосекторных бинарных фазовых пластин на плавленом кварце. Методология проведения работы. Многосекторные бинарные фазовые пластины на плавленом кварце с 4, 6 и 10 секторами с уровнями фазы 0 и p для работы на длине волны излучения 1,06 мкм были изготовлены на экспериментальной установке, реализующей технологию структурирования лазерно-индуцированной микроплазмой. Для очистки поверхности и уменьшения шероховатости пластин в области воздействия лазерно-индуцированной микроплазмы применялся дополнительный отжиг в печи. Изготовленные многосекторные бинарные фазовые пластины были протестированы при регистрации формируемых распределений интенсивности камерой с фоточувствительной матрицей в плоскости повышенного контраста и при лазерной абляции стальных образцов. Для оценки эффективности конверсии энергии пластин были проведены измерения энергии исходного лазерного пучка и энергии пучка на выходе пластин. Основные результаты. Изготовленные пластины осуществляют мультиплицирование гауссова пучка в серию световых пятен, окружающих область с нулевой интенсивностью, с равной интенсивностью (среднеквадратическое отклонение менее 1%), одинаковыми диаметрами пятен (среднеквадратическое отклонение не более 5%) и высокой эффективностью конверсии энергии (около 92%). Практическая значимость. Изготовленные с применением технологии структурирования лазерно-индуцированной микроплазмой многосекторные бинарные фазовые пластины обладают реальной перспективой использования в области лазерной микрообработки материалов.

Ключевые слова: многосекторные бинарные фазовые пластины, мультиплицирование гауссова пучка, скалярные вихревые пучки, лазерная микрообработка, лазерно-индуцированная микроплазма

Ссылка для цитирования: Шкуратова В.А., Костюк Г.К., Петров А.А., Степанюк Д.С., Нестров Н.А., Сеннов А.А. Мультиплицирование гауссова пучка многосекторной бинарной фазовой пластиной в скалярные вихревые пучки для лазерной микрообработки // Оптический журнал. 2023. Т. 90. № 5. С. 93–103. http://doi.org/10.17586/1023-5086-2023-90-05-93-103

Коды OCIS: 220.4610, 230.4000, 050.4865, 050.5080

 

Multiplexing of Gaussian beam by multisector binary phase plate into scalar vortex beams for laser processing

Victoria A. Shkuratova1*, Galina K. Kostyuk2, Andrey A. Petrov3, Dmitriy S. Stepanyuk4, Nikita A. Nesterov5, Anton A. Sennov6

ITMO University, St. Petersburg, Russia

1shkuratova_va@mail.ru      https://orcid.org/0000-0002-0570-3173

2gkkostiuk@itmo.ru               https://orcid.org/0000-0002-7998-1686

3aapetrov@itmo.ru                 https://orcid.org/ 0000-0002-2853-6478

4dmitriy.stepanyuk.234@mail.ru           https://orcid.org/0000-0002-8603-3377

5nkt.nesterov@mail.ru           https://orcid.org/0000-0001-8111-6870

6daarraak111@gmail.com     https://orcid.org/0000-0001-7769-57931

Abstract

Subject of study. A method of multiplexing of Gaussian laser beams into scalar vortex beams using multisector binary phase plates for increasing of the speed and productivity of laser microprocessing. The purpose of the work is to apply the technology of structuring transparent dielectrics by laser-induced microplasma for fabrication of multisector binary phase plates on fused silica. Methodology of the work. Multisector binary phase plates on fused silica with 4, 6, and 10 sectors with phase levels of 0 and p for operation at the wavelength of 1.06 µm were fabricated using an experimental setup for realization of laser-induced microplasma technology. We also applied additional annealing in a furnace to clean the surface and reduce the roughness of multisector binary phase plates in the area of laser-induced microplasma action. The fabricated multisector binary phase plates were tested by registration of generated intensity distributions in the plane of increased contrast using photosensitive camera and by ablation of steel samples. To evaluate an energy conversion efficiency, we measured the initial laser beam energy and the multisector binary phase plate output energy. Main results. The obtained results indicate that the fabricated multisector binary phase plates carry out multiplexing of Gaussian beam into a series of diffraction-limited spots surrounding the region with zero intensity and having the same intensity (standard deviation no more than 1%), the same spot diameters (standard deviation no more than 5%) and high energy conversion efficiency (around 92%). Practical significance. Such multisector binary phase plates fabricated by laser-induced microplasma have a real prospect for use in the field of laser microprocessing of materials.

Keywords: multisector binary phase plate, multiplexing of Gaussian beam, scalar vortex beams, laser processing, laser-induced microplasma

For citation: Shkuratova V.A., Kostyuk G.K., Petrov A.A., Stepanyuk D.S., Nesterov N.A., Sennov A.A. Multiplexing of Gaussian beam by multisector binary phase plate into scalar vortex beams for laser processing [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 5. P. 93–103. http://doi.org/10.17586/1023-5086-2023-90-05-93-103

OCIS сodes: 220.4610, 230.4000, 050.4865, 050.5080

 

Список источников

1.    Tang Y., Perrie W., Sierra D.R., et al. Laser material interactions of high-quality ultrashort pulsed vector vortex beams // Micromachines. 2021. V. 12. № 4. P. 376. https://doi.org/10.3390/mi12040376

2.   Tang Y., Perrie W., Schille J., et al. High-quality vector vortex arrays by holographic and geometric phase control // J. Phys. D: Appl. Phys. 2020. V. 53. № 46. P. 465101. https://doi.org/10.1088/1361-6463/ab9d9b

3.   Pavlov D., Syubaev S., Cherepakhin A., et al. Ultrafast laser printing of self-organized bimetallic nanotextures for multi-wavelength biosensing // Sci. Rep. 2018. V. 8. № 1. P. 1–10. https://doi.org/10.1038/s41598-018-34784-y

4.   Kudryashov S.I., Danilov P.A., Porfirev A.P., et al. High-throughput micropatterning of plasmonic surfaces by multiplexed femtosecond laser pulses for advanced IR-sensing applications // Appl. Surf. Sci. 2019. V. 484. P. 948–956. https://doi.org/10.1016/j.apsusc.2019.04.048

5.   Kuchmizhak A.A., Porfirev A.P., Syubaev S.A., et al. Multi-beam pulsed-laser patterning of plasmonic films using broadband diffractive optical elements // Opt. Lett. 2017. V. 42. № 14. P. 2838–2841. https://doi.org/10.1364/OL.42.002838

6.   Niziev V.G., Nesterov A.V. Influence of beam polarization on laser cutting efficiency // J. Phys. D: Appl. Phys. 1999. V. 32. № 13. P. 1455. https://doi.org/10.1088/0022-3727/32/13/304

7.    Weber R., Michalowski A., Abdou-Ahmed M., et al. Effects of radial and tangential polarization in laser material processing // Phys. Procedia. 2011. V. 12. P. 21–30. https://doi.org/10.1016/j.phpro.2011.03.004

8.   Allegre O.J., Jin Y., Perrie W., et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing // Opt. Exp. 2013. V. 21. № 18. P. 21198–21207. https://doi.org/10.1364/OE.21.021198

9.   Hamazaki J., Morita R., Chujo K., et al. Opticalvortex laser ablation // Opt. Exp. 2010. V. 18. № 3. P. 2144–2151. https://doi.org/10.1364/OE.18.002144

10. Nivas J.J.J., He S., Rubano A., et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate // Sci. Rep. 2015. V. 5. P. 17929. https://doi.org/10.1038/srep17929

11.  Porfirev A.P., Khonina S.N., Ivliev N.A., et al. Polarization-sensitive patterning of azopolymer thin films using multiple structured laser beams // Sensors. 2023. V. 23. № 1. P. 112. https://doi.org/10.3390/s23010112

12.  Khonina S.N., Karpeev S.V., Porfirev A.P. Sector sandwich structure: An easy-to-manufacture way towards complex vector beam generation // Opt. Exp. 2020. V. 28. № 19. P. 27628–27643. https://doi.org/10.1364/OE.398435

13.  Liu S., Qi S., Zhang Y., et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude // Photonics Res. 2018. V. 6. № 4. P. 228–233. https://doi.org/10.1364/PRJ.6.000228

14.  Ndagano B., Nape I., Cox M.A., et al. Creation and detection of vector vortex modes for classical and quantum communication // J. Lightwave Technol. 2018. V. 36. № 2. P. 292–301. https://doi.org/10.1109/JLT.2017.2766760

15.  Chen R.-P., Chen Z., Chew K.-H., et al. Structured caustic vector vortex optical field: Manipulating optical angular momentum flux and polarization rotation // Sci. Rep. 2015. V. 5. P. 10628. https://doi.org/10.1038/srep10628

16.  Pereira A., Sousa M., Almeida A.C., et al. Coherent-hybrid STED: High contrast sub-diffraction imaging using a bi-vortex depletion beam // Opt. Exp. 2019. V. 27. № 6. P. 8092–8111. https://doi.org/10.1364/OE.27.008092

17.  Chabrol G.R., Ciceron A., Twardowski P., et al. Investigation of diffractive optical element femtosecond laser machining // Appl. Surf. Sci. 2016. V. 374. P. 375–378. https://doi.org/10.1016/j.apsusc.2016.01.079

18. Hayasaki Y., Sugimoto T., Takita A., Nishida N. Variable holographic femtosecond laser processing by use of a spatial light modulator // Appl. Phys. Lett. 2005. V. 87. P. 031101. https://doi.org/10.1063/1.1992668

19.  Zou H., Zhu W.H., Gong J.F., et al. The study of various Dammann grating / in Proc. SOPO. 2010. P. 1–4. https://doi.org/10.1109/SOPO.2010.5504438

20. Li J., Zhang F., Pu M., et al. Quasi-continuous metasurface beam splitters enabled by vector iterative Fourier transform algorithm // Materials. 2021. V. 14. № 4. P. 1022. https://doi.org/10.3390/ma14041022

21.  Beck R.J., Party P.J., MacPherson W.N., et al. Application of cooled spatial light modulator for high power nanosecond laser micromachining // Opt. Exp. 2010. V. 18. № 16. P. 17059–17065. https://doi.org/10.1364/OE.18.017059

22. Pavlov D., Gurbatov S., Kudryashov S.I., et al. 10-million-elements-per-second printing of infrared-resonant plasmonic arrays by multiplexed laser pulses // Opt. Lett. 2019. V. 44. № 2. P. 283–286. https://doi.org/10.1364/OL.44.000283

23. Zhou L., Jiang Y., Zhang P., et al. Directly writing binary multi-sector phase plates on fused silica using femtosecond laser // High Power Laser Sci. and Eng. 2018. V. 6. P. e6. https://doi.org/10.1017/hpl.2018.1

24. Pavlov D., Porfirev A., Khonina S., et al. Coaxial hole array fabricated by ultrafast femtosecond-laser processing with spatially multiplexed vortex beams for surface enhanced infrared absorption // Appl. Surf. Sci. 2021. V. 541. P. 148602. https://doi.org/10.1016/j.apsusc.2020.148602

25. Khonina S.N., Ustinov A.V., Fomchenkov S.A., et al. Formation of hybrid higher-order cylindrical vector beams using binary multisector phase plates // Sci. Rep. 2018. V. 8. № 1. P. 1–11. https://doi.org/10.1038/s41598-018-32469-0

26. Kostyuk G.K., Shkuratova V.A., Petrov A.A., et al. Multisector binary phase plates on fused silica for generation of optical vortex beams superposition: Fabrication, characterization, and applications // Opt. Laser Technol. 2022. V. 152. P. 108161. https://doi.org/10.1016/j.optlastec.2022.108161

27. Kazanskiy N.L., Khonina S.N., Karpeev S.V., et al. Diffractive optical elements for multiplexing structured laser beams // Quantum Elec. 2020. V. 50. № 7. P. 629. https://doi.org/10.1070/QEL17276

28. Khonina S.N., Degtyarev S.A., Porfirev A.P., et al. Study of focusing into closely spaced spots at illuminating diffractive optical element by short pulse laser beam // Comput. Opt. 2015. V. 39. № 2. P. 187–196. https://doi.org/10.18287/0134-2452-2015-39-2-187-196

29. Larkin A.S., Pushkarev D.V., Degtyarev S.A., et al. Generation of Hermite–Gaussian modes of high-power femtosecond laser radiation using binary-phase diffractive optical elements // Quantum Elec. V. 46. № 8. P. 733–737. https://doi.org/10.1070/QEL16114

30. Kostyuk G.K., Sergeev M.M., Zakoldaev R.A., et al. Fast microstructuring of silica glasses surface by NIR laser radiation // Opt. Lasers Eng. 2015. V. 68. P. 16–24. https://doi.org/10.1016/j.optlaseng.2014.12.004

31.  Kostyuk G.K., Zakoldaev R.A., Koval V.V., et al. Laser microplasma as a tool to fabricate phase grating applied for laser beam splitting // Opt. Lasers Eng. 2017. V. 92. P. 63–69. https://doi.org/10.1016/j.optlaseng.2016.12.013

32. Shkuratova V., Kostyuk G., Sergeev M., et al. Rapid fabrication of spiral phase plate on fused silica by laser-induced microplasma // Appl. Phys. B: Lasers and Opt. 2020. V. 126. № 4. P. 1–6. https://doi.org/10.1007/s00340-020-7410-x

33. Veiko V.P., Volkov S.A., Zakoldaev R.A., et al. Laser-induced microplasma as a tool for microstructuring transparent media // Quantum Elec. 2017. V. 47. № 9. P. 842–848. https://doi.org/10.1070/QEL16377

34. Veiko V.P., Metev S.M., Kaidanov A.I., et al. Two-phase mechanism of laser-induced removal of thin absorbing films. I. Theory // J. Phys. D: Appl. Phys. 1980. V. 13. № 8. P. 1565. https://doi.org/10.1088/0022-3727/13/8/026

35. Khonina S.N., Volotovsky S.G. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures // JOSA A. 2010. V. 27. № 10. P. 2188–2197. https://doi.org/10.1364/JOSAA.27.002188

36. Khonina S.N. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions // Opt. Eng. 2013. V. 52. № 9. P. 091711. https://doi.org/10.1117/1.OE.52.9.091711

37. Vickers J., Burch M., Vyas R., et al.  Phase and interference properties of optical vortex beams // JOSA A. 2008. V. 25. № 3. P. 823–827. https://doi.org/10.1364/JOSAA.25.000823

38. Борн М., Вольф Э. Основы оптики / 2-е изд. Пер. с англ. Бреуса С.Н., Головашкина А.И., Шубина А.А. Под ред. Мотулевич Г.П. / М.: Наука, 1973. 720 с.

Born M., Wolf E. Principles of optics. London, N.Y., Paris: Pergamon Press Publ., 1970. 808 p.

39. Костюк Г.К., Степанюк Д.С., Шкуратова В.А. и др. Влияние структурирования плавленого кварца лазерно-индуцированной микроплазмой и очистки на функционирование многосекторных бинарных фазовых пластин // Известия вузов. Приборостроение. 2022. Т. 65. № 10. С. 747–762. https://doi.org/10.17586/0021-3454-2022-65-10-747-762

Kostyuk G.K., Stepanyuk D.S., Shkuratova V.A., et al. Influence of structuring of fused quartz by laser-induced microplasma and cleaning on the functioning of multisector binary phase plates [in Russian] // Izvestiya of higher educational institutions. Instrumentation. 2022. V. 65. № 10. Р. 747–762.