01.12.2015 , (Web Science, Scopus) (. Vak.ed.gov.ru 16.03.2018)



© 2014 .    Wenjin Zhang, Yufeng Peng

College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, China

­mail: yufengp@sohu.com

The transmission characteristics of a Raman­amplified atomic filter that can be used to detect fairly weak signals in free­space quantum­key distribution or laser communications are analyzed and discussed in the coherent and incoherent pump fields respectively. The theoretical model for the calculation of the transmission characteristics of a ground­state Raman­amplified Faraday dispersion atomic optical filter based on Raman gain and Faraday rotation is presented. The results show that the filter in a coherent pump field can achieve higher transmission and larger tunability than that in an incoherent pump field due to elimination of pumping detuning. In addition, the filter has a large scale tunability over 3.5 GHz via the Faraday transmission peak adjusted while its bandwidth is only 66 MHz, which is useful for free­space laser communication and lidar systems.

Keywords: atomic optical filter, Raman light amplification, Rubidium, Faraday dispersion, hyperfine structures.

OCIS codes: 120.2440

Submitted 17.10.2013



1.         Yeh P. Dispersive magnetooptic filters // Appl. Opt. 1982. V. 21. 11. P. 2069–2075.

2.         Yin B., Shay T.M. Theoretical model for a Faraday anomalous dispersion optical filter // Opt. Lett. 1991. V. 16. 20. P. 1617–1619.

3.         Menders J., Benson K., Bloom S.H., Liu C.S., Korevaar E. Ultranarrow line filtering using a Cs Faraday filter at 852 nm // Opt. Lett. 1991. V. 16. 11. P. 846–848.

4.        Chen H., She C.Y., Searcy P., Korevaar E. Sodium­vapor dispersive Faraday filter // Opt. Lett. 1993. V. 18. 12. P. 1019–1021.

5.         Hu Z., Sun X., Liu Y., Fu L., Zeng X. Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line // Opt. Commun. 1998. V. 156. 4–6. P. 289–293.

6.        Zhang Y., Jia X., Ma Z., Wang Q.  Potassium Faraday optical filter in line­center operation // Opt. Commun. 2001. V. 194. 1–3. P. 147–150.

7.         Dick D.J., Shay T.M. Ultrahigh­noise rejection optical filter // Opt. Lett. 1991. V. 16. 11. P. 867–869.

8.        Dressler E.T., Laux A.E., Billmers R.I. Theory and experiment for the anomalous Faraday effect in potassium // J. Opt. Soc. Am. B. 1996. V. 13. 9. P. 1849–1858.

9.        Hu Z., Sun X., Zeng X., Peng Y., Tang J. Zhang L., Wang Q., Zheng L. Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field // Opt. Commun. 1993. V. 101. 3–4. P. 175–178.

10.       Tang J., Wang Q., Li Y., Zhang L., Gan J., Duan M., Kong J., Zheng L. Experimental study of a model digital space optical communication system with new quantum devices // Appl. Opt. 1995. V. 34. 15. P. 2619–2622.

11.       Fricke­Begemann C., Alpers M., Höffner J. Daylight rejection with a new receiver for potassium resonance temperature lidars // Opt. Lett. 2002. V. 27. 21. P. 1932–1934.

12.       Höffner J., Fricke­Begemann C. Accurate lidar temperatures with narrowband filters // Opt. Lett. 2005. V. 30. 8. P. 890–892.

13.       Popescu A., Walldorf D., Schorstein K., Walther T. On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin­lidar receiver system // Opt. Commun. 2006. V. 264. 2. P. 475–481.

14.       Buttler W.T., Hughes R.J., Kwiat P.G., Lamoreaux S.K., Luther G.G., Morgan G.L., Nordholt J.E., Peterson C.G., Simmons C.M. Practical free­space quantum key distribution over 1 km // Phys. Rev. Lett. 1998. V. 81. 15. P. 3283–3286.

15.       Shan X., Sun X., Luo J., Tan Z., Zhan M. Free­space quantum key distribution with Rb vapor filters // Appl. Phys. Lett. 2006. V. 89. 19. P. 191121–191123.

16.       Ohman Y. On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic ratation // Stockholms Obs. Ann. 1956. V. 19. 4. P. 9–11.

17.       Harrell S.D., She C.Y., Yuan T., Krueger D.A., Chen H., Chen S.S., Hu Z.L. Sodium and potassium vapor Faraday filters revisited: theory and applications // J. Opt. Soc. Am. B. 2009. V. 26. 4. P. 659–670.

18.       Peng Y.F., Tang J.X., Wang Q.J. Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines // Acta Phys. Sin. (Overseas Edn). 1993. V. 2. 1. P. 1–8.

19.       Zielinska J.A., Beduini F.A., Godbout N., Mitchell M.W. Ultranarrow Faraday rotation filter at the Rb D1 line // Opt. Lett. 2012. V. 37. 4. P. 524–526.

20.      Agarwal G.S. Origin of gain in systems without inversion in bare or dressed states // Phys. Rev. A. 1991. V. 44. 1. P. R28–R30.

21.       Zibrov A.S., Lukin. M.D., Nikonov D.E., Hollberg L., Scully M.O., Velichansky V.L., Robinson H.G. Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb // Phys. Rev. Lett. 1995. V. 75. 8. P. 1499–1502.

22.      Zhu Y., Lin J. Sub­Doppler light amplification in a coherently pumped atomic system // Phys. Rev. A. 1996. V. 53. 3. P. 1767–1774.

23.      Zhu Y. Light amplification mechanisms in a coherently coupled atomic system // Phys. Rev. A. 1997. V. 55. 6. P. 4568–4575.

24.      Wanare H. Gain without population inversion in V­type systems driven by a frequency­modulated field // Phys. Rev. A. 2002. V. 65. 3. P. 033417–033427.

25.      Kang H., Wen L., Zhu Y. Normal or anomalous dispersion and gain in a resonant coherent medium // Phys. Rev. A. 2003. V. 68. 6. P. 063806–063810.

26.      Kilin S.Y., Kapale K.T., Scully M.O. Lasing without inversion: counterintuitive population dynamics in the transient regime // Phys. Rev. Lett. 2008. V. 100. 17. P. 173601–173604.

27.       Shan X., Sun X., Luo J., Zhan M. Ultranarrow­bandwidth atomic filter with Raman light amplification // Opt. Lett. 2008. V. 33. 16. P. 1842–1844.

28.      Peng Y., Zhang W., Zhang L., Tang J. Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm // Opt. Commun. 2009. V. 282. 2. P. 236–241.