
59“Оптический журнал”, 76, 8, 2009

Введение

Фундаментальной физической основой раз-
вития микроэлектроники на протяжении более 
чем полувекового периода ее развития был и 
остается волновой процесс переноса изображе-
ния. Начиная с 80-х годов прошлого века – это 
проекционный перенос с уменьшением масштаба 
и длины волны используемого излучения. Про-
цесс уменьшения длины волны достиг глубокого 
ультрафиолетового (DUV)1 диапазона и приоста-
новился на длине волны эксимерного ArF-лазера 
(λ = 193 нм), предполагавшегося освоения для 
фотолитографии эксимерного F2-лазера не со-
стоялось, ввиду причин, которые мы рассмотрим 
ниже. Тем не менее это не остановило темпов про-
грессивного уменьшения критического размера 
(CD)2 интегральных схем (ИС), который иногда 
называют стандартом ИС. Он последовательно 

снижался все предыдущие годы (130–110–90–
65–45–32 нм), достигнув в настоящее время 45 нм 
в передовом промышленном производстве [1, 2]. 
Таким образом, оптическая фотолитография 
еще в 2004–2005 годах успешно преодолела “на-
нобарьер” и обеспечила разрешение элементов, 
существенно меньших 100 нм [3]. На повестку 
дня поставлен вопрос о промышленном освоении 
CD = 32 и 22 нм [4]. Обратим внимание, что при 
этом воспроизводимый элемент топологического 
микрорисунка оказывается в 4–6 раз меньше 
длины волны используемого излучения. 

Рассмотрим основные факторы, которые 
позволили с помощью оптической литографии 
успешно преодолеть “нанобарьер”.

Ключевым элементом оптической фото-
литографии является фотолитографический 
объектив. За рассматриваемое время усилиями 
разработчиков оптических систем и новых опти-
ческих материалов он достиг необыкновенного 
совершенства. Он включает в себя несколько 
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десятков оптических элементов, максимальный 
размер которых превышает 300 мм в диаметре, и 
при оптической длине более одного метра обеспе-
чивает практически безаберрационное формиро-
вание изображения в поле около 30 мм диаметром 
при числовой апертуре  (NA)3, превышающей 
0,9. Следует отметить, что повышение числовой 
апертуры проекционных объективов для лито-
графии сопровождалось неуклонным снижением 
технологических потерь, по-видимому, за счет 
все более широкого внедрения интерференцион-
ного контроля на рабочей длине волны, компью-
теризированных методов сборки, исследования и 
доводки проекционных объективов и их элемен-
тов как в процессе изготовления, так и на этапе 
эксплуатации [5–7].

Следующим фактором, предопределившим та-
кой прогресс, явилось использование эксимерных 
лазерных источников света: в начале 90-х – KrF-
лазер (λ = 248 нм), затем (и по настоящее время) – 
ArF-лазер (λ = 193 нм). Эти лазеры в соединении 
с оптической системой достигли весьма высокого 
совершенства: при высочайшей стабильности 
пучка ширина линии излучения измеряется 
десятыми долями пикометра [8, 9]. Разработка 
более коротковолнового эксимерного F2-лазера 
для фотолитографии (λ = 157 нм) была выполнена 
[10], но дальнейшие работы, по-видимому, были 
приостановлены ввиду существенных успехов 
иммерсионной фотолитографии. 

Работа с размерами критического элемента 
изображения меньше длины, определяемой 
дифракционным пределом по Рэлею–Аббе, по-
требовала в первую очередь применения методов 
коррекции эффекта оптической близости, сво-
дившихся к созданию рисунка на фотошаблоне, 
упреждающего его искажения при печати в таких 
условиях [11–13]. Это позволило работать с эле-
ментами изображения меньше дифракционного 
предела, но при этом существенно усложнило 
фотошаблон. 

Другим фактором, прочно вошедшим в прак-
тику фотолитографической технологии, стало 
создание фотошаблонов с фазосдвигающими 
вставками [11–13]. Существуют не менее пяти 
приемов введения корректирующего фазового 
сдвига вблизи краевых участков микрорисунка 
на фотошаблоне, что требует коррекции волново-
го фронта и по третьей координате. Это еще более 
существенно усложнило изготовление фотоша-
блонов и заметно увеличило их стоимость.

Радикальным шагом оказалось предложенное 
в 2002 г. введение иммерсионной жидкости в про-

межуток между выходной поверхностью изобра-
жающего объектива и полупроводниковой пла-
стиной [3]. Это привело к возрастанию числовой 
апертуры в n раз. Поначалу в качестве иммерси-
онной жидкости применялась очищенная и обе-
згаженная вода, имеющая достаточную прозрач-
ность на λ = 193 нм и коэффициент преломления 
n = 1,44. В дальнейшем прогнозируется переход 
к “супериммерсии”, которую обеспечат иммер-
сионные жидкости с n, достигающим 1,75 [13]. 
Однако применение процесса иммерсирования 
приводит к заметному уменьшению выхода год-
ных изделий, связанному с выходом из жидкости 
пузырьков растворенного в ней атмосферного 
газа. Это объясняет тот факт, что фирма Интел 
(один из ведущих производителей ИС) отказыва-
лась от введения иммерсионного процесса вплоть 
до реализации стандарта CD = 45 нм.

Наконец, наиболее радикальным способом 
“преодоления” дифракционного предела и про-
движения к CD < 32 нм оказывается введение 
двойного экспонирования (DE/DP)4, которое име-
ет по крайней мере две разновидности [4, 13, 14]. 
Это двойное экспонирование с использованием 
одного и того же слоя фоторезиста (DE) и двой-
ное экспонирование с двумя литографическими 
циклами (DP). В обоих случаях применяются два 
различных взаимодополняющих фотошаблона. 
Понятно, что DE существенно более экономич-
но, но менее радикально чем DP, значительно 
удлиняющий технологический процесс. С дру-
гой стороны, следует обратить внимание на то 
обстоятельство, что эти технологии становятся 
возможными только при наличии высококон-
трастного и нелинейного фоторезиста. Такой 
резист был создан при исследованиях новых 
фоторегистрирующих сред, способных работать 
с коротковолновым излучением [12, 13]. Это 
так называемый фоторезист с химическим уси-
лением (CA резист)5, и все дальнейшие успехи 
технологии двойного экспонирования связаны 
с усовершенствованиями СА резиста, а также с 
технологией двухслойного резиста и силилиро-
вания. Эта технология позволила осуществить 
экспериментальную фотолитографию на излуче-
нии ArF-лазера с CD = 9 нм, что в 20 с лишним 
раз меньше длины волны экспонирующего из-
лучения. 

Правда, для этого необходимо двукратное при-
менение двойного экспонирования в режиме DP, 
что приводит к удлинению производственного 
цикла и удорожает технологический процесс. 

3  NA – numerical aperture.

4  DE – double exposure, DP – double patterning.
5  CA резист – chemically amplified resist.
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Таким образом, казалось бы, все задачи пла-
нарной технологии интегральных схем на обо-
зримое будущее могут быть решены оптической 
литографией с применением излучения глубо-
кого ультрафиолетового диапазона (λ = 193 нм). 
Но для более последовательного и детального 
обсуждения проблемы рассмотрим следующие 
два обстоятельства. 

Обстоятельство первое. Существуют по край-
ней мере три альтернативы оптической литогра-
фии. Это электронно-лучевая литография (ЭЛЛ), 
наноимпринт-литография (НИЛ) и экстремально-
ультрафиолетовая литография (ЭУФЛ). Согласно 
анализу SEMATECH [15] существенного вклада 
в производственные мощности ни от ЭЛЛ, ни от 
НИЛ вплоть до 2016 г. не ожидается, и основная 
конкуренция развернется между оптической лито-
графией в режиме DP и EUV6 фотолитографией. 

Детальный анализ ситуации [16] показывает, 
что вплоть до 2012–13 гг. для CD = 32 нм явное 
преимущество остается за DUV литографией в 
режиме иммерсии и DP, однако с 2014 г. и да-
лее, при переходе к CD = 22 нм, преимущество 
ока зывается на стороне EUV фотолитографии. 
К этому времени предполагается завершение 
разработки источника EUV излучения, обеспечи-
вающего мощность освещения маски 200 Вт и бо-
лее в промежуточном фокусе. Это выравнивает 
производительность EUV сканера-степпера с про-
изводительностью современного ArF-литографа. 
Кроме того, EUV фотолитография не нуждается 
в весьма сложных и дорогих масках (стоимость 
комплекта масок для DUV более $1М, почти в 
5 раз выше, чем для EUV фотолитографии) и в 
дополнительных экспозициях с необходимыми 
дополнительными операциями. Оптическая 
литография на CD = 32 нм сохраняет свое пре-
имущество, главным образом, за счет высоких 
капитальных затрат EUV технологии. Стоимость 
промышленного EUV сканера-степпера оценива-
ется в $89М – при $53М для наиболее сложного 
варианта DUV литографии [17].

Обстоятельство второе. Современная ультра-
большая интегральная схема (УБИС), например 
микропроцессора, выполняется с применением 
около 30 слоев, требующих фотолитографии. 
Только порядка десяти первых слоев связаны с 
формированием приборной полупроводниковой 
структуры, остальные обеспечивают коммута-
цию с помощью слоев металла, разделенных 
диэлектриком [13]. 

При этом требования к разрешению фото-
литографии падают с увеличением номера слоя 

коммутации. Высокопроизводительная линия 
включает в себя как минимум 10–15 фотоли-
тографических установок. При этом вполне 
естественно, что ввиду существенной разницы в 
стоимости только нескольких самых первых ли-
тографий, нуждающихся в наивысшем разреше-
нии, будут обеспечены самым высокоразрешаю-
щим инструментом, тогда как все последующие 
слои выгоднее исполнять с применением менее 
сложных и дорогих литографических устано-
вок. Отсюда следует, что независимо от сроков 
успешного внедрения более коротковолновой 
EUV литографии в промышленное производство 
DUV литография останется востребованной в 
 современной микроэлектронике и это подтверж-
дается прогнозом фирмы NIKON [18]. Влияние 
этих тенденций развития фотолитографии ка-
сается не только самых высокоразрешающих 
установок с высокоапертурными иммерсион-
ными объективами, но и более длинноволновых 
(λ = 248 нм), которые за последние годы также 
преодолели “нанобарьер” [19].

Важнейшей проблемой при разработке со-
временных фотолитографических объективов 
является выбор оптических материалов.

Для изготовления фотолитографического 
объектива необходим прозрачный в УФ области 
оптический материал с высокой оптической одно-
родностью и высокой лазерной стойкостью.

Для длин волн в глубокой ультрафиолето-
вой области (248 и 193 нм) долгое время един-
ственным подходящим материалом был так 
называемый плавленый синтетический “сухой” 
кварц, производство которого освоено фирмами 
CORNING и NIKON. Первые поколения фото-
литографических объективов для этих длин волн 
делали из “сухого” кварца. В последние годы ве-
дутся разработки “легированного” кварца, кото-
рые должны увеличить его световую стойкость.

Однако с начала 90-х годов прошлого века во 
всем мире были развернуты работы по созданию 
флюорита фотолитографического качества. 
Ранее препятствием к применению флюорита в 
фотолитографической оптике были малые раз-
меры и блочная структура синтезируемых кри-
сталлов, но в результате интенсивных научно-
исследовательских и технологических работ 
была создана технология производства флюорита 
фотолитографического качества.

Фторид кальция для фотолитографии

Фторид кальция (флюорит) фактически ока-
зался одним из наиболее пригодных материалов 6  EUV – extreme ultra-violet.
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для УФ фотолитографической оптики как с точки 
зрения требований к прозрачности и оптической 
однородности в DUV диапазоне, так и стойкости 
к воздействию излучения мощного УФ лазера. 

Работы по созданию крупногабаритного флюо-
рита фотолитографического качества и расчету 
фотолитографических объективов на его основе 
успешно ведутся в ГОИ им. С.И. Вавилова с на-
чала 90-х гг. Разработаны программа автомати-
зированного проектирования оптических систем 
WinDEMOS [20] и программа моделирования 
фотолитографических процессов LITHOGRA 
[21]. Разработана оптическая система фотоли-
тографического объектива на основе флюорита 
ФЕНИКС-248, формирующего изображение на 
длине волны эксимерного KrF-лазера с уменьше-
нием 5× и апертурой 0,65. Линейное поле зрения, 
в котором формируется изображение, имеет диа-
метр 30 мм, а качество изображения практически 
ограничено только дифракцией. Кроме того, в 
ГОИ им. С.И. Вавилова выполнены расчеты опти-
ческих проекционных систем на основе флюори-
та для эксимерного ArF-лазера, которые имеют 
апертуру 0,9 и 1,3 (для сухого и иммерсионного 
процессов соответственно) и обеспечивают фор-
мирование изображения с элементом разрешения 
60 и 45–32 нм. Рассчитаны 4- и 6-зеркальные 
объективы для EUV литографии [22].

Оптическая схема одного из вариантов высо-
коапертурного объектива из флюорита для DUV 
литографии на длине волны эксимерного ArF-
лазера показана на рис. 1. 

Возможность использования флюорита в каче-
стве основного материала для фотолитографиче-
ских объективов основана на том, что кристаллы 
фторида кальция, выращенные по специальной 
технологии, не только обладают необходимым 
пропусканием, оптической однородностью и 
стойкостью на длине волны 193 нм, но кроме 
того, имеют дисперсию в 1,4 раза меньше чем 
кварц, что позволяет более эффективно исполь-
зовать излучение эксимерного лазера.

“Внутреннее” двулучепреломление, обнару-
женное при исследовании возможностей приме-

нения флюорита для λ = 157 нм, весьма мало на 
длинах волн 193 и 248 нм и при необходимости 
может быть скомпенсировано, например, путем 
сочетания кристаллов с различной кристалло-
графической ориентацией [23].

В основу разработанной в ГОИ технологии 
выращивания фторида кальция с высокими опти-
ческими свойствами для DUV фотолитографии 
были положены следующие положения, выте-
кающие из многочисленных экспериментальных 
данных, полученных при выращивании как 
кристаллов фторидов, так и сапфира:

• напряжения возникают, если изменение 
температуры кристаллов происходит с такой 
скоростью, при которой структура кристалла не 
успевает придти в равновесное состояние;

• наличие больших градиентов температуры 
в кристаллах (особенно в радиальном направле-
нии) способствует возникновению напряжений;

• напряжения в растущем кристалле зависят 
от характера осевого распределения температу-
ры; теоретическая зависимость вида остаточ-
ных напряжений, возникающих в ходе роста 
кристаллов [24], показывает, что при линейном 
градиенте напряжения должны отсутствовать, 
при положительных отклонениях от линейности 
возникают напряжения сжатия на периферии и 
напряжения растяжения в центре, а при отри-
цательных отклонениях от линейности – напря-
жения растяжения на периферии и напряжения 
сжатия в центре; повторный нагрев (особенно в 
температурном поле с градиентом другого на-
правления по сравнению с направлением гра-
диента при росте) приводит к появлению малых 
(мозаика) или крупных (блоки) участков с раз-
личной ориентацией кристаллической решетки; 
длительный повторный отжиг в вакууме (осо-
бенно в открытом контейнере, т. е. при давлении 
пара ниже равновесного) приводит к нарушению 
стехиометрии, повышению концентрации дис-
локаций и точечных дефектов.

Эти положения послужили основой для раз-
работки процесса выращивания ненапряженных 
кристаллов непосредственно в процессе выра-
щивания без применения повторного нагрева 
с целью отжига кристаллов [25–27]. Для этого 
была использована печь с двумя нагревателями, 
в которой можно создавать оптимальное тепло-
вое поле. 

Экспериментально было обнаружено, что 
ненапряженные (0,5–2,0 нм/см) кристаллы по-
лучаются при создании в печи теплового поля, 
обеспечивающего охлаждение кристаллизуе-
мого материала при линейном осевом градиенте 

Апертурная 
диафрагма

Рис. 1. Высокоапертурный фотолитографиче-
ский объектив из флюорита.



63“Оптический журнал”, 76, 8, 2009

20–50 °С/м и при отсутствии (или минимальном  
значении) радиального градиента в зоне охлажде-
ния. За один технологический цикл выращивали 
от четырех до шести кристаллов фторида каль-
ция диаметром 300 и высотой 70 мм с кристал-
лической ориентацией < 111> при отклонении от 
заданной ориентации по всей площади кристалла 
не более 2°. Кристаллы, выращенные описанным 
способом, имеют высокую прозрачность (99,92–
99,96% на λ = 193 нм) и высокую оптическую 
однородность (Δn = (1–4)×10–6), малое двулу-
чепреломление (δ = 0,5–2,0 нм/см). В кристал-
лах практически отсутствует люминесценция, 
они имеют необходимую лазерную стойкость и 
полностью отвечают требованиям для создания 
оптических систем DUV фотолитографии.

Высокая лазерная стойкость и отсутствие 
люминесценции достигались благодаря исполь-
зованию исходного сырья с содержанием микро-
примесей щелочных металлов, редкоземельных 
металлов и кислорода на уровне 0,1 ppm. Для уда-
ления кислорода применялась предварительная 
термообработка сырья во фторирующей среде. 
Контроль качества термообработанного сырья 
проводился оптическим методом – по отсутствию 
локальных полос в спектрах пропускания, из-
меренных в DUV области спектра в образцах 
поликристаллического материала, полученного 
путем плавления в вакууме после предваритель-
ной термообработки во фторирующей среде.

Технология выращивания 
монокристаллов флюорита

Технологический процесс выращивания 
монокристаллов включает кристаллизацию из 
расплава и отжиг кристаллов с последующим 
охлаждением в вакуумной печи путем непре-
рывного перемещения тигля с расплавом из зоны 
кристаллизации в зону отжига при независимом 
регулировании режимов обеих зон.

В очищенный графитовый тигель помещают 
предварительно очищенный фторид кальция. Ти-
гель помещают в ростовую установку с системой 
нагревателей, обеспечивающих образование двух 
зон: кристаллизации и отжига, разделенных 
между собой с помощью теплоизоляции и экрана. 
Тигель устанавливают на штоке перемещения 
привода с программным управлением. Установ-
ку герметизируют и вакуумируют до давления 
5×10–6 мм рт. ст., после чего нагревают до нуж-
ных температур, регулируя мощность нагрева. 
В верхней зоне – зоне кристаллизации – темпера-
туру доводят до 1500 °С и выдерживают при этой 

температуре в течение 30 ч, достигая тем самым 
полного расплавления шихты, гомогенизации и 
очистки от включений. Затем начинают медлен-
ное опускание тигля с расплавом со скоростью 
1–3 мм/ч в зону отжига.

Между зонами кристаллизации и отжига под-
держивается градиент температур 8–12 °С/см. 
Такой градиент обеспечивает отсутствие пери-
ферийного зарождения блоков и рост монокри-
сталла на расположенную в дне тигля затравку 
требуемой ориентации.

Перемещение тигля из зоны кристаллизации 
в зону отжига происходит в течение 370–450 ч. 
Охлаждение проводят со скоростью 3 °С/ч до 
достижения температуры 900 °С и далее со ско-
ростью 7 °С/ч до 300 °С. После этого нагрев от-
ключают и происходит инерционное охлаждение 
всей установки, которое занимает около 70 ч.

Весь процесс выращивания кристаллов за-
нимает, как правило, 45 дней.

Выход годных заготовок на стадии выращива-
ния – 25%. Потери (75%) связаны с отбраковкой 
после контроля на наличие пузырей и включений 
в объеме, границ блоков, микроблочной разо-
риентации, двулучепреломления, оптической 
однородности.

В НИТИОМ проводятся работы по созданию 
базы для производства отечественного особо 
чистого сырья для изготовления флюорита фото-
литографического качества, которая обеспечит 
производство 1–2 т/год (и может быть увеличено 
до 10 тон/год).

Контроль и аттестации
кристаллов флюорита

Существующие в настоящее время стандарты 
на оптический флюорит и методики измерений 
не позволяют проводить полную аттестацию 
материала с точки зрения его применения при 
создании УФ фотолитографических объективов. 
Поэтому нами совместно с НИИ “Оптоинформа-
тика” СПбГУ ИТМО разработаны методики кон-
троля оптических параметров флюорита для УФ 
фотолитографии, в том числе методики

– определения спектров люминесценции,
– измерения пропускания,
– измерения лучевой стойкости кристаллов 

флюорита,
– измерения оптической однородности,
– измерения показателя преломления флю-

орита,
– измерения топографии двулучепреломле-

ния и др. 
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Эти методики основаны на использовании 
эксимерного лазера COMPEX 102, высокоточного 
спектрофотометра PE Lambda 950 и ряда специ-
ально разработанных компьютеризированных 
приборов и установок.

В качестве примера на рис. 2 приведена топо-
графия деформации волнового фронта при кон-
троле распределения оптической однородности в 
одной из заготовок оптического флюорита. При 
этом искажения, связанные с деформациями 
оптических поверхностей заготовки, вычита-
лись. Контроль проводился на длине волны 
633 нм. Оптическая неоднородность Δn в данной 
заготовке составила менее 2×10–6 см–1. 

На рис. 3 приведены результаты регистрации 
спектра люминисценции образца изготовленного 
флюорита при возбуждении излучением эксимер-
ного KrF-лазера. 

На рис. 4. приведены типичные результаты 
измерения спектра пропускания образцов флю-
орита, показывающие практическое отсутствие 
линий или областей поглощения, которые могли 
бы снизить лучевую прочность материала.

Все изготовленные образцы оптического 
флюорита проходят контроль по разработанным 
методикам, что позволяет провести аттестацию 
и принять решение по их оптимальному ис-
пользованию при создании УФ проекционно-
осветительной системы.

Фотолитографический объектив

Фотолитографический объектив является 
ключевым элементом литографической установ-
ки. В качестве примера рассмотрим разработан-
ную в рамках Российско-Белорусской программы 
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Рис. 2. Топография искажений волнового фронта, вносимого материалом заготовки флюорита. а – линии 
равного уровня, б – объемный график в долях длины волны, используемой при контроле (633 нм).

Рис. 3. Спектр люминесценции в относительных 
единицах. Пик на длине волны 248 нм вызван 
излучением возбуждающего KrF-лазера.

Рис. 4. Спектр пропускания образцов флюо-
рита. Образцы вырезаны из различных частей 
заготовки толщиной 50 мм. 1 – верх заготовки, 
2 – низ заготовки.

–1000
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“Победа-2” оптическую систему и конструкцию 
фотолитографического проекционного объек-
тива (ПО) ФЕНИКС-248, основные параметры 
которого были указаны выше. Общий вид УФ 
фотолитографического объектива ФЕНИКС-248 
показан на рис. 5. 

Разработана концепция непрерывной вы-
числительной поддержки при изготовлении 
проекционного объектива, основанная на ис-
пользовании технических, программных средств 
и методов CALS7 технологий и включающая 
следующие этапы:

• Разработка электронной модели (ЭМ) про-
екционного объектива (оптические элементы 
и корпус) на стадии автоматизированного про-
ектирования.

• Оптимизация объектива и корректировка 
ЭМ по результатам высокоточного измерения 
показателя преломления на рабочей длине волны 
и радиусов пробных стекол.

7 CALS – continuous acquisition and life cycle sup port.

(а) (б)

Волновой
фронт

Интерферометр
фазометрический

ОПФ

А

Б

В

ФРТ

Рис. 5. Общий вид (а) и разрез (б) УФ фотолито-
графического объектива ФЕНИКС-248. 

Рис. 6. Принципиальная схема стенда для финишной юстировки и автономных испытаний фотолито-
графического объектива. А – прецизионная система перемещения автоколлимационного контрзеркала, 
Б – прецизионная система перемещения интерферометра, В – испытуемый проекционный фотолитогра-
фический объектив.
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• Оптимизация объектива и корректировка 
ЭМ по результатам аттестации в процессе из-
готовления оптического материала по однород-
ности, оптических поверхностей, фактических 
толщин и центрировки линз.

• Позиционирование и центрировка линз в 
корпусе с компьютерным контролем и управ-
лением.

• Компенсационная доводка объектива в 
целом по результатам контроля волновых абер-
раций и дисторсии.

Фотолитографический объектив состоит из 
29 линзовых модулей, каждый из которых со-
держит линзу, корпус линзы и внешний корпус 
 модуля. Модули отличаются по назначению 
и  имеют несколько отличную конструкцию. 
Бо′льшая часть линзовых модулей объектива 
имеют типовую конструкцию. Каждая из линз 
линзового модуля закреплена в отдельной опра-
ве, установленной во внешний корпус модуля. 
Большинство оправ построены по кинемати-
ческому принципу и обеспечивают высокоточ-
ную финишную юстировку с помощю актюа-
торов, управляемых от компьютера. На линзы 
наносится просветляющее покрытие, разрабо-
танное в ГОИ им. С.И. Вавилова, которое обе-
спечивает коэффициент остаточного отражения 
менее 0,05%.

Для регулировки экспозиции предусмотрена 
управляемая компьютером ирисовая диафрагма. 
Объектив имеет систему компенсации измене-
ния масштаба из-за изменений температуры и 
давления.

Финишная юстировка и автономные испыта-
ния фотолитографического объектива прово дятся 
на стенде, принципиальная схема которого пока-
зана на рис. 6. Стенд включает неравноплечный 
лазерный фазометрический интерферометр, ко-
торый работает на основной длине волны проек-
ционного объектива. Стенд позволяет выполнять 
анализ деформаций волнового фронта, измерение 
масштаба и дисторсии изображения, формируе-
мого проекционным объективом, определение 

функции рассеяния точки (ФРТ), оптической 
передаточной функции (ОПФ) и моделирование 
тестовых изображений с учетом частично коге-
рентного освещения и конечно-элементной мо-
дели фоторезиста [20]. Инфор мация, полученная 
с помощью стенда, обеспечивает компенсацион-
ную сборку, а при необходимости – ретушь и до-
водку проекционного объектива.

Анализ перспектив развития 
проекционных объективов

для нанолитографии

Анализ тенденций развития проекционных 
оптических систем для нанолитографии [6, 7] 
показывает, что новые поколения проекционных 
объективов для нанолитографии отличаются 
широким использованием асферических поверх-
ностей.

Применение асферических поверхностей 
позволяет уменьшить габариты и материалоем-
кость объективов на 15–20%.

Рассматривается применение катодиоптриче-
ских систем (по идее Шупмана [28]), построенных 
по ломаной оптической схеме или in-line (см., 
например, патент США [29]). Катодиоптрические 
системы дают дополнительные возможности для 
коррекции хроматических аберраций и позволя-
ют расширить спектральную полосу используе-
мого излучения, но вследствие экранирования 
зрачка и рассеяния излучения на зеркалах воз-
никают проблемы.

В качестве весьма перспективного направле-
ния рассматривается применение оптических 
материалов с более высоким, чем у кварца или 
флюорита, показателем преломления. Этот под-
ход весьма важен для развития “супериммер-
сионных” систем, хотя разработки находятся 
в исследовательской стадии. Перечень работ, 
которые могут быть выполнены коллективом 
НИТИОМ по созданию оптических материалов 
с n193 ≥ 1, 6 для DUV фотолитографии приведен 
в табл. 1.

Таблица 1. Перечень работ, которые могут быть выполнены коллективом НИТИОМ по созданию материалов 
для “супериммерсионной” DUV фотолитографии

Выращивание и исследование кристаллов Поиск технологии
изготовления нанокерамики
на основе оксидов металловкубические ориентированные не кубические

Лютециевый гранат
Lu3Al5O12

Твердые растворы
BaF2–LaF3, BaF2–LuF3 

Al2O3 с нулевой  ориентацией

Поиск новых кристаллов на основе 
многокомпонентных смесей
фторидов

Нанокерамика
MgO (0,85)–CaO (0,15)

Нанокерамика
Lu3Al5O12
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Особенности фоточувствительных 
материалов для нанолитографии

Весьма важным компонентом фотолитографи-
ческой нанотехнологии является фоточувстви-
тельный материал, пригодный для формирова-
ния наноструктур, а также разработка методов 
“преодоления” дифракционного предела, которая 
требует приспособления к конкретному оборудова-
нию и техпроцессу. Последнее десятилетие озна-
меновалось значительным прогрессом в области 
фоторезистов [30], начавшимся с создания нового 
типа органических резистов, способных работать 
с коротковолновым излучением. Это  CA-резисты, 
в которых роль фоточувствительного стимулятора 
процесса формирования скрытого изображения с 
последующим его проявлением выполняют моле-
кулы так называемого фотокислотного генератора 
(PAG)8. Активированная актиничным излучением 
молекула PAG вступает в реакцию с нераствори-
мыми радикалами матрицы фоторезиста, перево-
дя их в растворимое состояние и повышая таким 
образом растворимость резиста в проявителе. 
Особенностью СА резистов является каталити-
ческий характер реакции: кислота регенерирует 
после каждой реакции, и от 500 до 1000 реакций 
могут стать результатом одного акта поглощения 
фотона. Все это приводит не только к повышению 
чувствительности, но и к высокой контрастности. 
Окончательное формирование скрытого изображе-
ния обычно происходит в процессе послеэкспози-
ционной термообработки в результате диффузии 
PAG. Как выяснилось, СА резисты пригодны и для 
более коротковолнового излучения, вплоть до EUV 
(13,5 нм). Однако применительно к изображениям 
высокого разрешения прходится отказаться от 
протяженной матрицы в пользу относительно низ-
комолекулярных соединений. Так, работая с осно-
вой в виде органических молекул длиной 2–5 нм, 
удалось достичь разрешения на уровне 22 нм, а в 
экспериментах с синхротронным излучением в от-
дельных опытах с интерференционной засветкой 
добиться разрешения 11 нм [31]. Вместе с тем по-
нятно, что дальнейшее увеличение разрешающей 
способности потребует поиска принципиально 
иных решений. Как размер молекул матрицы, 
так и диффузионная природа формирования края 
рисунка не могут не стать ограничителями раз-
решающей способности СА резиста. Затруднения 
вызывает достижение приемлемой шероховатости 
границ рисунка (LER)9 при приемлемой чувстви-
тельности.

В ФТИ им. А.Ф. Иоффе имеется значительный 
задел в области разработки новых светочувстви-
тельных слоев для фотолитографии, использую-
щих неорганические соединения. В настоящее 
время выполнены различные эксперименты 
по взаимодействию DUV и EUV излучения с 
тонкими неорганическими пленками. Иссле-
дованы пленки халькогенидных стеклообраз-
ных полупроводников (ХСП), а также пленки 
гидрированных оксидов переходных металлов. 
Институт располагает необходимым научно-
техническим потенциалом для разработки новых 
технических решений для фоточувствительных 
материалов с нелинейными свойствами в DUV и 
EUV диапазонах и технических средств их синте-
за. Такие резисты могут оказаться пригодными 
для освоения диапазона CD = 5–15 нм. Один из 
примеров высокой разрешающей способности 
неорганического резиста, разработанного в ФТИ, 
приведен на рис. 7. 

Рисунок задается маской, изготовленной 
электронно-лучевой литографией и не является 
предельным для используемой фоторегистри-
рующей среды.

Экспонирование проведено при интерферен-
ционной засветке на синхротронном излучении, 
и разрешение ограничено шагом применявшейся 
в эксперименте дифракционной решетки.

Заключение

Для достижения современных технических 
характеристик фотолитографической оптики, 
используемой при производстве современных 
УБИС в России, имеется возможность создания 
нанолитографических объективов на основе 

8 PAG – photo acid generator.
9 LER – line edge roughness.

(а) (б)

Рис. 7. Пленка As2S3, проэкспонированная 
на синхротронном излучении с длиной волны 
13,5 нм, после проявления демонстрирует от-
четливую интерференционную структуру с 
полосами/зазорами 30–40 нм. а – вид сверху, 
б – вид под углом.
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 флюорита. Кроме того, в нашей стране создан 
фундаментальный задел в области проекцион-
ных нанофотолитографических систем для EUV 
области [22, 32, 33]. Поэтому представляется 
целесообразной программа работ в области на-
нолитографии [34], приведенная в табл. 2.

Период эффективного применения каждого 
поколения оптической литографии составляет не 
менее 10–15 лет, поэтому интенсификация работ 
в данном направлении позволит вывести отече-
ственное производство УБИС на современный 
уровень и создать основу для его дальнейшего 
развития. 
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