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Введение

Примерно до середины 70-х годов прошлого 
века технологии фотоприемников (ФП) инфра-
красного (ИК) диапазона на основе твердых 
растворов А4В6 развивались параллельно с 
технологиями ФП на основе CdHgTe (КРТ), не 
уступая им по параметрам и имея некоторые 
преимущества вследствие большей простоты 
технологических процессов. Значения обна-
ружительной способности ФП на основе А4В6

 

были близки к ограниченным фоновым пото-
ком [1–3].

Основными причинами, по которым позже 
предпочтение было отдано технологиям ИК 
ФП на основе КРТ, являлись большое значение 
статической диэлектрической проницаемости 
ε соединений А4В6 и большее отличие коэффи-
циентов термического расширения (КТР) этих 
соединений по сравнению с кремнием. Первая 
вела к уменьшению частотного диапазона ФП 
на основе А4В6, а вторая усложняла применение 
этих ФП в гибридных вариантах многоэлемент-
ных фотоприемных устройств (ФПУ).

В 90-х годах технологии ИК ФП на основе 
А4В6 получили новый импульс после демон-
страции возможности создания монолитного 
матричного ФПУ, в котором на единой кремние-
вой подложке формируются и схема обработки 

сигнала (мультиплексор), и матрица ИК фото-
диодов [4–7]. Параметры таких ФПУ оказались 
близкими к ограниченным фоном.

Помимо этого, новые перспективы для исполь-
зования соединений А4В6

 в ИК технике связаны 
с радикальной модификацией их свойств при 
легировании некоторыми примесями. Так, в кон-
це 80-х годов было показано [8, 9], что в PbSnTe:In 
определенного состава и уровня легирования при 
температуре ниже примерно 20 К наблюдаются 
очень низкая проводимость без освещения и вы-
сокая фоточувствительность. Это открыло новые 
возможности использования этих соединений 
для создания ИК ФП резистивного типа (фото-
сопротивлений). В дальнейшем исследованиям и 
интерпретации этих свойств было уделено очень 
много внимания. Были разработаны модели, объ-
ясняющие стабилизацию уровня Ферми внутри 
запрещенной зоны и высокую фоточувствитель-
ность [10–12]. Вместе с тем, несмотря на то что 
для этого узкозонного полупроводника при ге-
лиевых температурах в литературе используется 
широко понятие “диэлектрическое состояние”, 
крайне мало внимания уделялось исследованию 
особенностей его свойств именно как изолятора. 
В первую очередь это касается роли инжекции 
носителей заряда из контактов. 

Помимо чувствительности в фундаменталь-
ной полосе поглощения, в легированных соеди-
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нениях А4В6 наблюдалось появление фототока 
вплоть до субмиллиметрового (СБММ) диапазона. 
Была обнаружена фотопроводимость в PbTe:Ga 
в области частот 100–460 см–1 (λ = 28–100 мкм) 
[13]. Возникновение фотопроводимости авторы 
связали с резонансным возбуждением локальной 
моды колебаний, соответствующей метастабиль-
ному примесному состоянию и переходу в зону 
проводимости электронов, до этого локализован-
ных на примесном центре. О появлении фототока 
в кристаллах PbSnTe:In при λ = 90 и λ = 116 мкм 
сообщалось в работе [14]. Авторы указывают, что 
фототок наблюдается при энергиях фотонов, зна-
чительно меньших, чем термическая активаци-
онная энергия основного примесного состояния. 
Наблюдавшийся эффект объясняется, как и в 
[13], возбуждением электронов, находящихся 
на локальных метастабильных состояниях. 
О появлении избыточного тока при воздействии 
лазерного излучения с длиной волны 336,8 мкм 
было сообщено также в [15].

Целью данной работы является анализ осо-
бенностей фотоэлектрических свойств PbSnTe:In 
и фотоприемников на его основе, связанных с 
инжекцией носителей заряда, включая роль 
локализованных состояний (ловушек), а так-
же перспектив дальнейшего развития много-
элементных ФП и ФПУ ИК и СБММ диапазонов 
на основе легированных теллуридов свинца и 
олова.

Фоточувствительность PbSnTe:In

Фототок в области фундаментального 
поглощения. В [16] приведены эксперимен-
тальные доказательства того, что ток в образцах 
Pb1–xSnxTe:In (x ≈ 0,26) при гелиевых температу-
рах является инжекционным и ограничивается 
пространственным зарядом в присутствии центров 
прилипания электронов и проведена оценка па-
раметров этих центров. Таким образом, высокая 
фоточувствительность PbSnTe:In в области фун-
даментального поглощения может быть связана с 
захватом электронов на ловушки. Такое предпо-
ложение было сделано ранее в [9], но анализ меха-
низмов фототока с учетом инжекции ни в этой, ни 
в других известных нам работах не проводился.

В соответствии с теорией инжекционных 
токов, ограниченных пространственным заря-
дом (ТОПЗ) [17], был проведен расчет вольт-
амперных характеристик (ВАХ) в образцах 
Pb1–xSnxTe:In (x ≈ 0,26) при освещении в обла-
сти фундаментального поглощения и проведено 
сравнение расчета с экспериментом [18].

Из литературы известно [19, 20], что в неле-
гированных образцах Pb1–xSnxTe из-за высокой 
концентрации носителей заряда преобладающим 
механизмом рекомбинации является ударная 
(Оже) рекомбинация с коэффициентами удар-
ной рекомбинации 265 10n pη η −= = × см6 с–1. 
В работе [21] было показано, что при T = 4,2–7 К 
в легированных индием пленках Pb1–xSnxTe с 
малой концентрацией равновесных носителей 
заряда излучательная рекомбинация преобла-
дает вплоть до значений оптической генерации 
g0 ≤ 6×1015 см–3 с–1. 

Выполненные в [18] расчеты концентраций 
электронов на ловушках в темноте и при ос-
вещении, концентраций свободных электро-
нов и дырок при освещении в зависимости от 
 напряжения показали, что при не очень боль-
ших напряжениях в области фундаментального 
поглощения преобладает дырочный компонент 
фототока из-за захвата электронов на ловушки. 
Это имеет место вплоть до напряжений, близких 
к напряжению полного заполнения ловушек 
(ПЗЛ) UПЗЛ (рис. 1а). При больших напряже-
ниях (ловушки полностью заполнены за счет 
инжекции электронов из контактов) фототок 
становится биполярным, а соотношение между 
электронным и дырочным компонентами фото-
тока определяется подвижностями электронов 
и дырок. 

На рис. 1б представлены эксперименталь-
ные зависимости ВАХ в темноте и полного тока 
при освещении, а также расчетная зависимость 
полного тока при уровне оптической генерации 
g0 = 103 см–3 с–1, при котором наблюдалось наи-
лучшее совпадение расчета с экспериментом. 

Из рисунка видно, что экспериментальный 
ток при освещении имеет минимум в области на-
пряжений, при котором осуществляется режим 
ПЗЛ, что соответствует расчету. Однако в экс-
перименте этот минимум выражен слабее, чем в 
расчете. Это связано с тем, что при расчете для 
простоты учитывался только один центр захвата 
электронов, что ведет к более резкому возрас-
танию расчетной ВАХ в темноте и сдвигу ее по 
оси напряжений по сравнению с экспериментом. 
Главным здесь является само наличие минимума 
полного тока, которое связано с уменьшением 
времени жизни дырок в условиях возрастающей 
инжекции электронов.

Одним из важнейших результатов расчета 
является то, что до перехода в режим ПЗЛ фото-
ток должен быть дырочным, что подтверждается 
экспериментальными данными по эффекту Холла 
при освещении при различных напряжениях [18]. 
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Действительно, в слабых полях наблюдается про-
водимость дырочного типа, а коэффициент Холла 
почти не зависит от приложенного напряжения. 
В этом случае ВАХ имеет линейный характер. 
В сильных полях наблюдается электронный ток 
с сильной зависимостью коэффициента Холла от 
напряжения. В этом случае ВАХ существенно не-
линейна и описывается теорией ТОПЗ.

Фототок в субмиллиметровой области 
спектра. В рамках теории ТОПЗ при наличии 
центров прилипания электронов фототок в даль-
нем ИК и СБММ диапазонах излучения должен 
появляться как результат оптического возбуж-
дения электронов, захваченных на ловушки. 
В этом случае спектральная область чувстви-
тельности будет определяться энергетическим 
положением и степенью заполнения ловушек 
для электронов, зависящей от уровня инжекции 
(приложенного напряжения), а также от сечения 
поглощения фотона.

Численные расчеты ВАХ при освещении об-
разца на длинах волн λ = 198, 149 и 130 мкм были 

выполнены нами для модели с равномерным 
распределением ловушек по энергии в диапазо-
не 0,001–0,01 эВ ниже дна зоны проводимости 
и концентрации ловушек D = 2×1016 см–3/эВ. 
Выбранные значения длин волн определены 
спектральным диапазоном излучения лазера на 
свободных электронах (ЛСЭ), который использо-
вался в экспериментах. Расчеты проведены для 
геометрии образца, описанной в [16], а именно: 
два симметричных металлических электрода 
длиной 0,2 мм на поверхности пленки PbSnTe:In 
толщиной 1 мкм разделены зазором шири-
ной 64 мкм. На рис. 2а показаны результаты 
расчета.

Большие значения фототока при возбужде-
нии излучением с меньшей длиной волны при 
малых напряжениях обусловлены тем, что в 
этой области напряжений заполнены более глу-
бокие ловушки. При увеличении напряжения 
примерно до 3 В и более значения фототока на 
всех длинах волн выравниваются. Это связано с 
полным заполнением всех ловушек и с тем, что 
в модель заложены одинаковые параметры всех 
ловушек при их равномерном распределении по 
энергии. В предположении преобладания дро-
бового шума, которое представляется разумным 
для инжекционного механизма темнового тока, 
в рамках данной модели при напряжении сме-
щения U ≈ 0,1 В расчетный порог обнаружения 
должен составлять от 5×1011 фотон/см2 (для 
λ = 198 мкм) и до 5×107 фотон/см2 (130 мкм) 
в полосе частот Δf = 1 Гц.

Расчетные спектральные зависимости чув-
ствительности в СБММ области спектра при раз-
личных напряжениях смещения представлены 
на рис. 2б. По мере увеличения напряжения 
заполняются более мелкие ловушки и область 
чувствительности сдвигается в более длинновол-
новую область спектра.

Анализ ВАХ без освещения позволяет доста-
точно точно рассчитать распределение ловушек 
по энергии (см., например, в [22]). В реальных 
образцах PbSnTe:In оно оказывается неодно-
родным. Расчетные значения чувствительности 
как функции приложенного напряжения в 
СБММ области спектра для двух длин волн для 
указанного распределения ловушек приведены 
на рис. 2в вместе с экспериментальными дан-
ными, полученными с использованием ЛСЭ. 
Видно достаточно хорошее совпадение данных 
эксперимента и расчета для длины волны из-
лучения λ = 130 мкм и несколько худшее – для 
λ = 198 мкм. Одной из причин этого может быть 
то, что в модель для расчета заложено однородное 
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Рис. 1. Фототок PbSnTe:In в области фундамен-
тального поглощения. а – расчетные зависи-
мости плотности электронного (1), дырочного 
(2) и полного (сплошная кривая) фототока (3) 
j от напряжения U при оптической генерации 
g0 = 10 см–3 с–1

 [18]; б – экспериментальные (1, 
2) и расчетная (3) ВАХ: 1 – без освещения, 2 и 
3 – при освещении. Для расчетной зависимости 
g0 = 103 см–3 с–1 [18].
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заполнение ловушек в межэлектродной области 
по мере увеличения напряжения смещения. Ре-
ально оно может быть неоднородным. При этом 
влияние такой неоднородности должно быть бо-

лее сильным для больших длин волн (для более 
мелких уровней ловушек).

Матричные фотоприемные устройства

Дальний  инфракрасный  диапазон. Спектраль-
ный диапазон ФПУ этого диапазона определяется 
шириной запрещенной зоны Pb1–xSnxTe:In, для 
которого наблюдаются наименьшие токи без 
освещения и высокая фоточувствительность. 
Эти свойства реализуются при составе, близком 
к x ≈ 0,26, которому соответствует красная гра-
ница чувствительности вблизи 20 мкм. Для этого 
диапазона были разработаны два типа ФПУ: 
линейчатое (ЛФПУ) форматом 2×128 элементов 
и квазиматричное ФПУ форматом 128×128 эле-
ментов, предназначенные для использования в 
условиях низких фоновых потоков при рабочей 
температуре T = 7–15 К. Каждый из пикселов 
ФПУ представляет собой фотоприемник, в кото-
ром существенна инжекция носителей заряда из 
контактов, хотя построение ФПУ в целом близко 
к схеме фоторезистивного ФПУ. Ограничения 
на фоновый поток и рабочую температуру в зна-
чительной степени связаны с выбранной схемой 
мультиплексора, максимальные входные токи 
которого должны быть порядка 10–10 А и менее 
при времени накопления 10–3 с. Увеличение как 
фонового потока, так и рабочей температуры 
выше T = 15–17 К вело к переполнению входных 
емкостей мультиплексора. В данном случае “ква-
зиматричное” ФПУ означает, что была реализо-
вана схема с адресацией к отдельным пикселам 
ФПУ по строкам и столбцам с использованием 
двух линейчатых мультиплексоров. На одном из 
них (“горизонтальном”) проводилось накопление 
фотосигнала с выбранной строки квазиматрицы, 
а другой (“вертикальный”) обеспечивал под-
ключение к “горизонтальному” мультиплексору 
соответствующей строки.

Таким образом, в данной схеме матричного 
ФПУ принципиально могли быть реализованы 
только  пороговые параметры, не превышающие 
параметров линейчатого ФПУ соответствующей 
длины.

Технология изготовления линейчатых и ма-
тричных ФПУ на основе пленок PbSnTe:In, а 
также методика измерения их пороговых пара-
метров в условиях низких фоновых потоков 
детально описаны в [23]. На рис. 3 показан внеш-
ний вид разработанного ЛФПУ (а) и представ-
лено распределение мощности, эквивалентной 
шуму (МЭШ), по элементам при рабочей темпе-
ратуре T = 7 К (б). 
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Рис. 2. Фототок PbSnTe:In в СБММ области 
спектра. а – расчетные зависимости плотности 
тока j от напряжения U без освещения (1) и при 
освещении на длине волны 198 (2), 149 (3) и 
130 (4) мкм. Освещенность равна 5×1020 фото-
нов/см2 с; б – расчетные зависимости плотно-
сти фототока j от длины волны λ. Напряжение 
смещения U = 0,69 (1), 1,87 (2), 3,65 (3), 4,88 В 
(4); в – зависимость фототока I от напряжения 
смещения U. Сплошные кривые – расчет, ква-
драты – эксперимент при длине волны лазера 
на свободных электронах λ = 130 мкм, круги – 
λ = 198 мкм.
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В центре ЛФПУ горизонтально расположе-
на сдвоенная линейка фоторезисторов 2×128 
элементов с периодом 100 мкм (общая длина 
12,8 мм). К линейке с помощью гибких полии-
мидных шлейфов присоединены 4 кремниевых 
мультиплексора с тактовой частотой 1 кГц. 
Видно, что при T = 7 К более 80% элементов 
ЛФПУ имеют МЭШ менее 1×10–18 Вт Гц–0,5, что 
соответствует обнаружительной способности 
1×1016 см Гц1/2 Вт–1. Следует подчеркнуть, что 
при измерении параметров ЛФПУ из-за его чрез-
вычайно высокой чувствительности использо-
вался источник излучения типа “абсолютно 
черное тело” (АЧТ) с TАЧТ = 78 К и выходным 
отверстием диаметром 1 мм, расположенным на 
расстоянии 100 мм от ЛФПУ (апертура 1:100). 
ФПУ такого типа с предельно высокими пара-
метрами могут найти применение в условиях 
космоса для задач астрономии, а также для 
обнаружения низкотемпературных объектов на 
больших дальностях. Помимо этого, возможно 
их использование для решения задач в СБММ 
области спектра, о чем будет сказано ниже.

Параметры ФПУ на основе PbSnTe:In ухуд-
шаются с повышением температуры из-за уве-
личения темновых токов и снижения чувстви-
тельности. Тем не менее при использовании 
соответствующих мультиплексоров, способных 
работать при величине входных токов до 10–6 А, 
даже при рабочей температуре T = 27–29 К об-
наружительная способность достигает значений 
D* = 1×1011–1×1012 см Гц1/2 Вт–1 в зависимости 
от фоновой нагрузки. Это делает их перспек-
тивными для решения ряда специальных задач 

дистанционного зондирования Земли из космоса. 
В частности, красный край чувствительности 
таких ФПУ λ = 20 мкм позволяет перекрывать 
всю область пропускания атмосферы в ИК части 
спектра (до 13,5 мкм), а высокие значения об-
наружительной способности при пониженных 
фонах позволяют эффективно использовать их в 
узкополосных мультиспектральных ФПУ. 

Отдельный интерес представляет возмож-
ность получения пленок соединений группы 
А4В6 на кремниевых подложках с использова-
нием буферных слоев CaF2/BaF2, о чем упомина-
лось выше [4, 5]. Интегральные (монолитные) 
ФПУ на основе структур Si/CaF2/BaF2/PbSnTe:In, 
несмотря на более низкие рабочие температуры 
(около T = 30 К и менее), имеют ряд преимуществ 
по сравнению с гибридными в спект ральном 
диапазоне до 20 мкм. Структуры Si/CaF2/BaF2/
PbTe:Ga являются перспективными для спек-
трального диапазона до 5–5,5 мкм при рабочих 
температурах около 80 К.

Субмиллиметровый диапазон. Как было 
показано в предыдущих разделах, в условиях 
преобладания инжекционных токов при нали-
чии уровней захвата на основе пленок PbSnTe:In 
могут быть изготовлены структуры, чувстви-
тельные к СБММ излучению. При этом схема 
построения многоэлементных ФПУ для этого 
диапазона может быть полностью эквивалентна 
описанной в предыдущем разделе. Принципи-
альным в данном случае является то, что из-за 
большей длины волны размер пиксела даже для 
λ = 100 мкм должен быть не менее 200 мкм, что 
для формата ФПУ 128×128 элементов соответ-
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Рис. 3. Линейчатое фотоприемное устройство [23]. а – внешний вид. В центре расположена линейка фото-
приемников 2×128 элементов, к которой присоединены 4 мультиплексора; б – распределение МЭШ по 
элементам линейчатого фотоприемного устройства. Рабочая температура T = 7 К, по оси ординат отложено 
число элементов Nэлем с МЭШ, не превышающей значения, указанного на оси абсцисс.
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ствует его физическим размерам не менее чем 
2,6×2,6 см. Отметим, что реализация ФПУ тако-
го большого размера на принципах гибридной 
сборки с использованием практически любого 
вида ФП для СБММ области спектра (полупро-
водниковых, сверхпроводящих болометров и 
т. п.) представляется крайне затруднительной 
по целому ряду причин, на которых мы не будем 
останавливаться. Поэтому, безусловно, воз-
можность получения чувствительных пленок 
непосредственно на кремниевых подложках 
дает PbSnTe:In большие преимущества при 
разработке монолитных матричных ФПУ этого 
диапазона. 

Отдельный интерес представляет рекорд-
ная чувствительность ФПУ на основе пленок 
PbSnTe:In к излучению слабо нагретых тел в ИК 
области спектра (в области фундаментального по-
глощения). Как показали исследования ЛФПУ, 
о котором шла речь в предыдущем разделе, при 
большой апертуре происходит “перегрузка” 
ЛФПУ уже при температуре излучателя, близ-
кой к температуре жидкого азота. Более того, 
“слишком большой” может оказаться и темпе-
ратура излучателя (около T = 50–60 К и менее), 
если он расположен непосредственно вблизи 
такого ФП. Таким образом, ИК ФПУ этого типа 
представляют интерес для разработки матрич-
ных СБММ ФПУ с непрямым преобразованием 
излучения. В основу такого устройства положено 
формирование изображения в СБММ диапазоне 
спектра на тонком поглощающем экране, рас-
положенном непосредственно вблизи ИК ФПУ, 
которое способно регистрировать излучение сла-
бо нагретых поверхностей. Сам поглощающий 
экран и ИК ФПУ располагаются в вакуумиро-
ванной камере, охлажденной вместе с СБММ 
входным окном-фильтром до гелиевых темпера-
тур. Температурный профиль промежуточного 
экрана, формируемый СБММ частью спектра, 
прошедшей через отрезающий фильтр, анализи-
руется матрицей ИК диапазона. В данном случае 
условия работы ИК ФПУ на основе PbSnTe:In 
оказываются близкими к низкофоновым и низ-
котемпературным условиям, для которых ранее 
и были получены рекордные значения МЭШ. 

Детальный анализ возможностей ФПУ на 
основе PbSnTe:In для таких задач выполнен в 
[24]. Расчеты показали, что при температуре 
фона ТФ = 293 К, относительном отверстии 
СБММ объектива 1:2, коэффициентах пропу-
скания объектива и СБММ фильтра 80–90%, 
коэффициенте поглощения экрана в СБММ 
диапазоне 60–80% средняя температура экрана в 

стационарном режиме может лежать в пределах 
T = 30–60 К. Как показано в [24], этого доста-
точно для реализации указанной схемы с исполь-
зованием PbSnTe:In и практически невозможно 
при использовании ИК ФПУ на основе других 
полупроводниковых материалов. При этом прин-
ципиально важной является большая длина 
волны красного края чувствительности (около 
20 мкм), которая и позволяет эффективно реги-
стрировать излучение слабо нагретого экрана. 

Быстродействие устройства в целом будет 
определяться характерными временами нагрева 
и охлаждения экрана, которое в данном случае 
является в основном радиационным. Сделанные 
оценки показывают, что при толщине экрана, 
выполненного на основе органических соедине-
ний, порядка 1 мкм, можно ожидать быстродей-
ствия до 10 кадр/с.

Следовательно, на принципах непрямой реги-
страции СБММ излучения при гелиевых рабочих 
температурах использование ФПУ на основе 
пленок PbSnTe:In позволяет создать устройство, 
аналогичное ИК тепловизионному устройству, 
но работающему в СБММ области спектра на 
длинах волн около 100 мкм или более, т. е. не 
тепловизор, а “теравизор”. 

В конце этого раздела подчеркнем, что прин-
ципиально важным при разработке матричных 
ФПУ для СБММ области спектра является боль-
шой размер отдельного пиксела, что автомати-
чески ведет к большим физическим размерам 
такой матрицы. Таким образом, на первый план 
выходит перспективная возможность создания 
монолитных ФПУ на основе соединений А4В6 
на кремниевых подложках, которые в принципе 
могут иметь практически любые размеры, что 
невозможно в настоящий момент для других 
узкозонных полупроводников.

Заключение

Комплекс фотоэлектрических свойств твер-
дого раствора PbSnTe:In при гелиевых темпера-
турах в “диэлектрическом состоянии” хорошо 
описывается в рамках теории инжекционных 
токов, ограниченных пространственным за-
рядом в присутствии ловушек. Анализ вольт-
амперных характеристик показывает, что ло-
вушки для электронов расположены ниже дна 
зоны проводимости примерно на 0,001–0,01 эВ. 
В области фундаментального поглощения высо-
кая фоточувствительность находит объяснение 
как результат захвата возбужденных светом 
электронов на эти ловушки, что подтвержда ется 
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данными по эффекту Холла при освещении. 
Захват электронов ловушками при высоком 
уровне инжекции из контактов определяет 
фоточувствительность в субмиллиметровом 
диапазоне длин волн, которая появляется вслед-
ствие опустошения этих ловушек под действием 
низкоэнергетичных фотонов. Полученные ре-
кордно высокие значения пороговых параметров 
фотоприемных устройств на основе PbSnTe:In в 
дальнем ИК диапазоне могут найти применение 
и для субмиллиметровых приложений в систе-
мах с непрямой регистрацией длинноволнового 
излучения. Перспективность соединений А4В6 

определяется также возможностью получения 
фоточувствительных слоев непосредственно на 
кремниевых подложках и создания монолитных 
фотоприемных устройств большого физиче-
ского размера, что принципиально важно для 
устройств субмиллиметрового диапазона.

Работа поддержана РФФИ (грант 07-02-
01336а).
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