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Введение

В настоящее время лазеры широко исполь-
зуются в научных исследованиях, промышлен-
ности, медицине. Это делает актуальным защиту 
приемников и органов зрения от ослепления и 
повреждения лазерным излучением. 

Спектральный диапазон генерации лазеров 
простирается от ультрафиолетовой (УФ) до ин-
фракрасной (ИК) области спектра. В ряде задач 
используются перестраиваемые по частоте ла-
зеры. Длительность лазерного импульса может 
быть от единиц фемтосекунд до сотен миллисе-
кунд. Задача оптических ограничителей состоит 
в том, чтобы пропускать без ослабления излуче-
ние низкой энергии, не повреждающее приемник 
и органы зрения, и ограничить интенсивное из-
лучение до допустимого уровня. Это значит, что 
оптическое ограничение должно строиться на 
основе нелинейных фотодинамических процес-
сов и эффектов. В качестве таких эффектов могут 
использоваться эффекты нелинейного погло-
щения или эффекты, приводящие к изменению 
пространственного распределения прошедшего 
излучения (фотоиндуцированное рассеяние, са-
модефокусировка, фокусировка и т. п.). 

Институт лазерной физики НПК “ГОИ  им. 
С.И. Вавилова” в течение ряда последних лет вы-
полнил и продолжает исследования и разработки 
по созданию быстродействующих нелинейно-
оптических ограничителей для защиты органов 
зрения и фотоприемных устройств от лазерного 
излучения, действующих в широком спектраль-
ном интервале от 0,3 до 12  мкм. Естественно, 
что в таком широком спектральном диапазоне 

нелинейно-оптические ограничители должны 
строиться на различных физических принципах 
и различных нелинейных средах. 

Данная работа кратко обобщает результаты 
исследований и разработок, проведенных сотруд-
никами Института лазерной физики в период 
2000–2007 годов. 

1. Широкополосные быстродействующие 
нелинейно-оптические ограничители 

на основе фуллеренов 
и фуллереноподобных наноструктур

Открытые в 1985 году группой авторов (Кро-
то, Хит, О’Брайн, Керл и Смолли) фуллерены-
молекулы, содержащие двадцать и более ато-
мов углерода, обладают ярко выраженными 
нелинейно-оптическими свойствами, связан-
ными со структурой молекулы [1]. Поэтому они 
могут быть использованы для создания ограни-
чителей интенсивного излучения. Фуллеренсо-
держащие материалы, обладающие вследствие 
многоатомности молекулы практически сплош-
ным спектром поглощения в видимой и ближней 
ИК областях спектра, являются перспектив- 
ными средами для широкополосных лимитеров 
[1,  2]. Экспериментально доказано, что фулле-
ренсодержащие среды позволяют ограничивать 
лазерное излучение с быстродействием в десятки 
и сотни фемтосекунд [3]. 

Для создания оптических ограничителей 
лазерного излучения фуллерены вводятся в 
жидкие или твердотельные матрицы (микро- и 
нанопористые стекла, золь-гель композиции, 
полимеры), а также в жидкокристаллические 
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среды. В основе механизма оптического огра-
ничения излучения фуллереном лежит явление 
насыщенного поглощения с возбужденных 
электронно-колебательных уровней молекулы. 
Это явление называется “обратным насыщенным 
поглощением” (reverse saturable absorption  – 
RSA). Описание этого явления базируется на 
процессах заселения и опустошения энергети-
ческих уровней фуллерена, упрощенная схема 
которых приведена на рис.  1. Основными про-
цессами в данном случае являются поглощение 
света с синглетного состояния S0 (переход S0–Sx), 
интерконверсия между синглетными и триплет-
ными состояниями молекулы (S1–T1) и процессы 
поглощения света с возбужденных уровней S1–SN 

и T1–TN. Возможны также обратные безызлуча-
тельные переходы. Если сечение возбуждения с 
возбужденных состояний больше, чем сечение 
перехода с основного синглетного состояния, т. е. 
σS

ex ≈ σT
ex

 > σ0
S, то с ростом интенсивности света 

и увеличением заселенности возбужденных со- 
стояний поглощение света возрастает – начина-
ется процесс RSA, в результате чего происходит 
ограничение проходящего излучения. 

При больших удельных энергиях падающего 
излучения к процессу насыщенного поглощения 
с возбужденных уровней добавляются процессы 
светоиндуцированного рассеяния, вклад кото- 
рых зависит от материала матрицы, содержащей 
фуллерены [4]. Светоиндуцированное рассеяние 
в фуллеренсодержащих растворах связано с тем, 
что мелкомасштабная пространственная неодно-
родность профиля интенсивности падающего 

пучка трансформируется в неоднородность на-
грева фуллеренсодержащей среды. Это приводит 
к возникновению неоднородностей плотности и 
показателя преломления среды и к рассеянию 
излучения на этих неоднородностях. Экспери-
ментально и теоретически показано, что в раство-
рах (например, С60-толуол, С60–CCl4 и др.) RSA и 
светоиндуцированное рассеяние дополняют друг 
друга [5]. Механизм RSA работает в широком 
диапазоне длительностей лазерных импульсов, 
вплоть до пико- и фемтосекунд. Светоиндуци-
рованное рассеяние имеет место для длительно-
стей импульсов, превышающих единицы нано- 
секунд. Но при этом светоиндуцированное рас-
сеяние происходит в более широком спектраль-
ном диапазоне по сравнению с RSA. Процесс RSA 
эффективно действует в видимой области спект
ра, тогда как светоиндуцированное рассеяние 
эффективно работает и в УФ области спектра. 

Светоиндуцированное рассеяние на мелко
масштабных неоднородностях среды не разви-
вается в фуллеренсодержащих твердотельных 
матрицах (микропористых стеклах, полимерных 
пленках, допированных фуллеренами) из-за 
малых значений коэффициента термического 
расширения и малой величины неоднородности 
плотности среды. Дополнительные факторы, ко-
торые влияют на оптическое ограничение в твер-
дотельных фуллеренсодержащих средах,  – это 
влияние матрицы на структуру энергетических 
уровней фуллерена и его кинетические констан-
ты, а также в ряде случаев эффекты, связанные с 
агрегацией молекул фуллерена. Все это приводит 
к тому, что нелинейно-оптическое ограничение 
лазерного излучения в фуллеренсодержащих 
твердотельных системах (при прочих равных 
условиях) на порядок меньше, чем в случае жид-
костных систем [6–8]. 

Результаты по нелинейно-оптическому огра-
ничению лазерного излучения второй гармони-
ки Nd:YAG-лазера с длительностью импульса 
8  нс показывают, что порог ограничения (по 
уровню 20% отклонения кривой от линейного 
пропускания) составляет 0,5–0,1 Дж/см2. Мак-
симальное значение вводимой энергии опре
делялось прочностью стенок кюветы и состав-
ляло 8–10 Дж/см2. В системе с коллимирован- 
ным пучком достигнуто ослабление проходящей 
через образец энергии в 60–100 раз для концен-
трации С60 в толуоле С = 0,6–1,5 мМ. В системе 
С60–CCl4 (при пропускании низкоинтенсивного 
сигнала Т = 50%) получено ослабление мощного 
сигнала Евых/Евх более чем в 200 раз и сниже-
ние порога ограничения в 3–5 раз, что связано 
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Рис.  1. Упрощенная схема энергетических 
уровней молекулы фуллерена.
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с влиянием растворителя на процесс ограниче- 
ния [2]. При введении фуллеренов (например С60) 
в микропористые стеклянные матрицы коэффи-
циент ослабления мощного сигнала при тех же 
условиях составляет всего 6-8 крат. При введе- 
нии С60 в полимерные среды существенно сни-
жается и энергетический порог разрушения 
материала (до 2–4 Дж/см2). 

Основным недостатком фуллеренсодержащих 
сред является наличие у них окраски. В ряде 
практических случаев, например, при приме-
нении лимитеров в наблюдательных приборах, 
окрашенность фильтров приводит к нарушению 
“цветового комфорта видения” и может вызвать 
ошибки в идентификации наблюдаемого пред-
мета. Другим недостатком является и невоз-
можность их эффективной работы в ближней 
ИК области спектра. Поэтому возрос интерес к 
созданию нелинейно-оптических ограничителей 
на основе суспензий углеродных наночастиц, 
которые бесцветны и обладают оптической не-
линейностью в ближнем ИК диапазоне. В Инсти-
туте лазерной физики было экспериментально 
и теоретически исследовано нелинейно-оптиче- 
ское ограничение излучения в суспензиях с угле-
родными наночастицами (carbon black suspen- 

sion – CBS) и в суспензиях с углеродными фул-
лереноподобными нанокластерами – астрале-
нами [9,  10]. Астралены представляют собой 
многослойную графитоподобную структуру, 
содержащую 99,9% углерода, со средним раз-
мером частиц 25–150 нм (рис. 2а). Рентгеновские 
рефлексы таких частиц (рис. 2в) сильно размыты 
вследствие различных размеров наноструктур. 
При этом наблюдается один достаточно резкий 
рефлекс, соответствующий межслойному рас-
стоянию 2Н = 6,72, характерному для некоторых 
углеродных наноструктур, например нанотру-
бок. В спектре пропускания астраленов (рис. 2б) 
в области 200–300 нм (на рисунке не показана) 
наблюдается полоса поглощения, связанная с 
молекулярной структурой, подобной фуллере-
ну (атомы углерода расположены в вершинах 
пятиугольников и шестиугольников). Полосы 
поглощения в областях 900, 1200, и 1400  нм 
связаны с поглощением спиртоводной среды, в 
которой находятся астралены. В целом, в види-
мой и ближней ИК областях спектр пропускания 
сплошной, что обеспечивает неокрашенность 
суспензий. На рис.  3 приведены результаты 
измерения оптического ограничения в колли-
неарных пучках излучения Nd:YAG-лазера на 

Рис. 2. а – изображение астраленов, полученное с помощью электронного микроскопа; б – cпектр 
пропускания суспензии астраленов, в – рентгенограмма астраленов
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λ  =  532 и 1,064  нм водными суспензиями CBS 
и астраленов с поверхностно-активным вещест- 
вом, которое обеспечивает устойчивость суспен-
зии в течение длительного времени. Как видно, 
суспензия астраленов в воде дает несколько 
лучшее ограничение, чем CBS. Теоретические 
исследования и измерения индикатрисы свето-
индуцированного рассеяния показывают, что 
основным механизмом оптического ограничения 
углеродных наночастиц, включая астралены, 
является нагрев поглощающей наночастицы, 
образование паровой оболочки вокруг астралена 
при фазовом переходе жидкость–пар и рассеяние 
света на расширяющейся паровой оболочке [10]. 
При увеличении падающей энергии происходит 
светорассеяние на пузырьках углеродного пара, 
образовавшихся вокруг углеродной частицы, 
нагретой до температуры сублимации. Астрален, 
являясь фуллеренсодержащим нанокластером, 
обладает более высокой температурой (5000 °С) 
сублимации. Поэтому, по-видимому, оптическое 

ограничение на суспензиях астраленов связано 
только с одним фазовым переходом жидкость-
пар, в отличие от CBS. Этот важный фактор по-
зволяет многократно использовать астралены 
для ограничения при высоких плотностях энер-
гии излучения. 

Дополнительно к механизму светоиндуциро-
ванного рассеяния для астралена проявляется 
механизм RSA, так как астрален, являясь на-
нокластером углерода, обладает π-сопряженной 
электронной оболочкой. Это подтверждается, в 
частности, генерацией синглетного кислорода 
при взаимодействии молекулярного кислорода 
с фотовозбужденными астраленами.

На рис.  4 представлены результаты оптиче
ского ограничения суспензии астралена и угле-
родных наночастиц. Из рисунков видно, что в 
коллинеарных пучках порог ограничения (Епор) 
излучения на λ  =  532  нм для суспензии астра-
ленов в воде и спирте составлял 0,1  Дж/см2, а 
динамический диапазон ограничения равен 100. 
Такой порог ограничения не достаточен для за-
щиты приемников и органов зрения от лазерно-
го излучения. Порог ограничения может быть 
существенно снижен с помощью следующего 
технического решения – размещения кюветы 
с суспензией астралена в фокальной плоскости 
высококачественной оптической системы с 
ахроматическими асферическими объективами. 
Результаты исследований оптического ограни-
чения суспензии астралена в такой оптической 
схеме на различных длинах волн приведены на 
рисунке 4. На рис. 5 показаны результаты срав-
нительных исследований порога ограничения, 
проведенные в софокусной схеме для компози- 
ций С60–CCl4, суспензия CBS в воде и спирте, 
суспензия астраленов в спирте. Использование 
софокусной схемы позволило снизить порог 
ограничения до уровня 10–6–10–5 Дж. Сравнение 
порога ограничения в софокусной системе для 
различных составов с одинаковым начальным 
пропусканием показывает, что для суспензии 
астралена в спирте он составляет 10–5  Дж, для 
суспензии CBS в спирте – 2×10–6 Дж, для С60 в 
CCl4  – 5×10–6  Дж. По-видимому, низкий порог 
ограничения в суспензии CBS связан не только с 
образованием пузырьков пара, но и с сублимаци-
ей углеродных наночастиц в фокусе пучка. Для 
астраленов, обладающих более высокой темпе-
ратурой деструкции, этот процесс наступает при 
более высоких плотностях энергии.

В табл. 1 приведены сравнительные характе-
ристики лимитеров для коллимированных и сфо-
кусированных пучков. Как видно, применение 

Рис. 3. Экспериментальные зависимости про-
шедшей энергии от падающей. а – l = 532 нм, 
б – l = 1064 нм. 1 – Евых=Евх×Тлин (где Тлин – 
линейное пропускание среды). 2 – суспензия 
углеродных частиц (l = 532 нм). 3 – суспензия 
астралена в воде (l = 532 нм). 4 – суспензия 
углеродных частиц в воде (l = 1064 нм).
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софокусной схемы для жидкостных лимитеров 
позволило расширить динамический диапазон 
ограничения до 103–104. Для лимитеров на осно-
ве полимерных пленок не удается существенно 
увеличить динамический диапазон из-за относи-
тельно низкой лучевой стойкости образцов, что 

становится особенно критичным при размеще- 
нии нелинейной среды в фокусе оптической си-
стемы. Существенным моментом для определе-
ния области использования лимитеров являются 
их быстродействие и возможность работы при 
импульсно-периодическом воздействии. 

Нами были проведены измерения быстродей-
ствия срабатывания ограничителей на основе 
суспензии астралена в спирте для параллельных 
пучков при воздействии импульсов длительно-
стью tи = 12 нс 2-й гармоники (532 нм) YAG:Nd-
лазера. Образец представлял собой кварцевую 
кювету толщиной 10  мм, заполненную суспен-
зией. Коэффициент пропускания на l = 532 нм 
был равен 50%. На рис. 6 приведены осцилло-

Рис. 5. Порог оптического ограничения Тпор 
для различных сред в софокусной системе. 
1  – суспензия астралена в спирте, 2 – С60–
CCl4, 3 – CBS в воде, 4 – CBS в спирте.

Рис. 6. Осциллограммы падающего (1) и про-
шедшего (2) импульсов при E

вх = 1 Дж/см2.
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граммы падающего и прошедшего через кювету 
импульсов. Плотность входной энергии состав-
ляла 1 Дж/см2, а длительность прошедшего им-
пульса 3 нс, следовательно, время срабатывания 
оптического ограничителя на основе суспензии 
астралена было менее 0,1tи.

Время восстановления начального пропуска-
ния среды после прохождения лазерного импуль-
са является важной характеристикой лимитера. 
Изучение релаксационных процессов после про-
хождения лазерного импульса проводилось ме-
тодом зондирования для различных нелинейно-
оптических сред: С60-толуол, суспензии углерод-
ных наночастиц и суспензии астраленов в спирте 
[11]. В качестве зонда использовалось излучение 
He–Ne-лазера (рис. 7а). Для суспензии угле-
родных наночастиц и астраленов выявлены две 
особенности поведения нелинейно-оптической 
среды после прохождения мощного лазерного 
импульса (рис.  7б). Во-первых, это ослабление  

пропускания излучения He–Ne-лазера лими-
тером, вызванное рассеянием на турбулентных 
неоднородностях среды, имеющих тепловую 
природу. Во-вторых, просветление нелинейно-
оптической среды. Этот эффект может быть 
связан с выводом (или сублимацией) углеродных 
наноструктур из области распространения ла-
зерного пучка. Для раствора С60-толуол эффект 
просветления не наблюдается. 

Быстродействие жидкостных лимитеров на 
фуллеренах, фуллереноподобных нанокласте-
рах (астраленах) и углеродных наночастицах в 
импульсно-периодическом режиме ограничено 
временем восстановления начального пропу-
скания среды и для коллинеарных пучков оно 
составляет 0,67 Гц для смеси С60-толуол, 0,03 Гц 
для CBS-суспензии в спирте и 0,07  Гц для су-
спензии астраленов в спирте. Для нелинейно-
оптической среды, помещенной в конфокальную 
систему, допустимо использовать жидкостные 

Таблица 1. Параметры лимитеров для коллимированных и сфокусированных пучков

Состав 
среды

Параметры

Фокусировка
Длина 

волны, нм
Начальное 

пропускание, %
Порог 

ограничения
Динамический 

диапазон

С60-толуол

Нет 532 50 0,1 Дж/см2 ≈ 100

Есть 532 50
2×10–3  Дж/см2 

> 103

1,5×10–5  Дж 

C60-CCl4

Нет 532 50 0,02–0,05 Дж/см2 ≥ 200

Есть 532 50
6×10–4  Дж/см2

 

> 104

5×10–6  Дж

Суспензия 
астраленов 
в воде или 

спирте

Нет* 532 50 0,1 Дж/см2 ≈ 100

Есть** 532 50
10–3Дж/см2

104

10-5Дж

Суспензия 
CBS в воде 
или спирте

Нет 532 50 0,1–0,15 Дж/см2

Есть 532 50

2×10–4 Дж/см2*, 
10–4  Дж/см2** 

5×104 –105

2×10–6  Дж*,

10–6  Дж**

Суспензия 
многослойных 

нанотрубок 
(в воде)

Нет 532 50 0,1 Дж/см2 60–100

Есть 532 50
2,5×10–4 Дж/см2

104

2×10–6 Дж

С60-ПММА

(полиметил-
метакрилат)

Нет 532 43 0,1 Дж/см2 5
Порог разруше-

ния 1 Дж/см2

Есть 532 30
4×10–2 Дж/см2

 

25
Пробой 

2,5×10–4 Дж10–5 Дж

  * – суспензия астраленов в воде. 
** – суспензия астраленов в спирте.
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лимитеры в импульсно-периодическом режиме в 
том случае, если частота повторения импульсов 
не превосходит 3 Гц. 

2. Ограничители излучения 
на основе фотоиндуцированных 

процессов в полупроводниках

Ограничители излучения на основе фулле-
ренов и астраленов, описанные в предыдущем 
разделе, обеспечивают эффективное ограниче-
ние при высоких плотностях лазерного излу-
чения. В то же время для обеспечения безопас-
ности органов зрения и защиты фотоприемных 
устройств необходимо ограничение излучения 
на уровне ниже 1 мкДж. Кроме того, для защиты 
фотоприемных устройств ИК области спектра 
необходимо создание ограничителей, способ-
ных ослаблять лазерное излучение ближнего и 
среднего ИК диапазонов. В Институте лазерной 
физики были проведены обширные исследова- 
ния нелинейно-оптических эффектов в полупро-
водниках и полупроводниковых наночастицах 
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Рис. 7. а – схема эксперимента с зондирова-
нием He–Ne-лазером, б – типичная осцилло-
грамма релаксационных процессов в жидких 
фуллеренсодержащих средах.

в видимом, ближнем и среднем ИК диапазонах. 
На основе этих исследований были созданы 
нелинейно-оптические среды для низкопорого-
вых ограничителей излучения.

2.1. Ограничители на основе 
самодефокусировки излучения в примесных 

монокристаллических полупроводниках

В данном цикле исследований ставилась за-
дача создания ограничителей излучения ближ-
него ИК диапазона, обеспечивающих пороги 
ограничения менее 10 пДж. Подобные низкопо-
роговые ограничители необходимы для защиты 
от ослепления и повреждения излучением вы-
сокочувствительных фотоприемных устройств. 
В  качестве нелинейно-оптического механизма 
ограничения был выбран эффект самодефокуси-
ровки излучения. Оптическая схема ограничите-
ля излучения на основе самодефокусировки при 
фотогенерации носителей заряда в полупровод
нике показана на вставке рис. 8.

Ограничитель состоит из двухлинзового теле-
скопа с действительным фокусом, в фокальной 
плоскости которого расположена пластина по-
лупроводника. Апертура диафрагмы на выходе 
телескопа соответствует диаметру пучка при 
отсутствии дефокусировки (режим линейного 
пропускания). При фотогенерации свободных 
электронов в полупроводнике происходит увели-
чение их концентрации. Показатель преломления 

Eвых, Дж

Eвх, Дж

10–11

10–12

10–12 10–10 10–8

10–13

Рис.  8. Ограничение излучения при само-
дефокусировке в GaAs:O. λ = 1,315  мкм, 
τ = 50  нс. На вставке – оптическая схема 
ограничителя на основе самодефокусировки 
излучения.
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полупроводника зависит от концентрации свобод-
ных носителей заряда и определяется как

 2

0 2*
0 0

.i

i i

e N
n n

n m
= −

ε ω∑

Здесь n0 – показатель преломления полупровод
ника с равновесной концентрацией носителей 
заряда, e – заряд электрона, N – концентрация 
носителей заряда, индекс i соответствует типу 
носителя заряда, ε0  – диэлектрическая прони-
цаемость вакуума, m* – эффективная масса но-
сителя заряда, ω – круговая частота излучения. 
Из приведенного выражения видно, что увеличе-
ние концентрации носителей заряда приводит к 
уменьшению показателя преломления полупро-
водника. В  результате в области воздействия 
излучения в объеме полупроводника возникает 
отрицательная динамическая линза, на которой 
происходит дефокусировка излучения, что при-
водит к уменьшению энергии излучения, про-
ходящей через диафрагму.

Для увеличения концентрации свободных 
носителей заряда в полупроводнике может быть 
использовано однофотонное межзонное погло-
щение [12], двухфотонное поглощение [13] и 
примесное поглощение. В наших экспериментах 
для ограничения излучения использовалось при-
месное поглощение в широкозонных полупро-
водниках. Так как фотогенерация электронов с 
глубоких примесных уровней является однофо-
тонным процессом, то в этом случае снижается 
энергетический порог ограничения и может быть 
реализовано эффективное ограничение для нано- 
и микросекундных лазерных импульсов. Для 
ограничения излучения в видимом и ближнем 
ИК диапазонах использовались монокристаллы 
ZnSe, легированные кислородом или медью. Для 
ограничения в ближнем ИК диапазоне приме-
нялись кристаллы GaAs с примесью кислорода, 
меди или хрома. 

На рис.8 показана кривая ограничения при 
самодефокусировке излучения в GaAs, легиро-
ванном кислородом для λ = 1.315 мкм и τ = 50 нс 
[14]. Из рисунка видно, что порог ограничения 
составляет 2  пДж, а динамический диапазон 
ограничения достигает 104. Аналогичные ре-
зультаты были получены и для монокристалли-
ческого ZnSe, легированного кислородом. При 
увеличении длительности лазерного импульса 
и переходе в микросекундный диапазон в этих 
материалах также наблюдается низкопороговое 
ограничение излучения. Однако при увеличении 
длительности импульса эффективность ограни
чения уменьшается. В основном это связано с 

процессами рекомбинации свободных электро- 
нов и с пространственным расплыванием дина
мической линзы из-за диффузии носителей заря-
да [15, 16]. В табл. 2 приведены характеристики 
ограничителей на основе самодефокусировки 
излучения в примесных полупроводниках: энер-
гетический порог ограничения (Епор) и динами-
ческий диапазон ограничения (D).

Таким образом, нами экспериментально по-
казано, что эффект самодефокусировки в при-
месных полупроводниках позволяет получить 
ограничение излучения с порогом на уровне еди-
ниц пикоджоулей и динамическим диапазоном 
ограничения более 104. Ограничение излучения 
может быть получено в более широком спек-
тральном диапазоне, чем в случае двухфотонного 
поглощения. Наши эксперименты показали, что 
ограничители данного типа могут эффективно 
работать в импульсно-периодическом режиме 
при частоте повторения лазерных импульсов до 
100 кГц. В то же время ограничители на основе 
самодефокусировки излучения обладают рядом 
недостатков: необходимостью использования 
оптической схемы, зависимостью характеристик 
ограничения от пространственного распределе-
ния излучения на входе ограничителя и сильным 
искажением пространственного распределения 
прошедшего излучения в режиме ограничения. 

2.2. Ограничители излучения на основе 
фотоиндуцированного фазового перехода 

в диоксиде ванадия

Перспективным нелинейным материалом 
для создания ограничителей излучения среднего 
ИК диапазона является диоксид ванадия (VO2), 
обладающий обратимым фазовым переходом 
(ФП) полупроводник-металл [17, 18]. Диоксид 
ванадия в ограничителях используется либо в 
виде поликристаллических пленок, либо в форме 

λ, мкм τ, нс Материал Епор, пДж D

1,06

 
1,315

1,315

  
1,55

10

 
50

6 мкс

 
5

GaAs 
ZnSe

GaAs

GaAs 
ZnSe

GaAs

5 
10

2

8 
20

5

105–
106 
105

104

105 
5×104

104

Таблица 2. Характеристики ограничителей на 
основе самодефокусировки излучения в примесных 
полупроводниках



79“Оптический журнал”, 76, 4, 2009 

наночастиц, входящих в состав композитного 
материала. ФП в VO2 может происходить в ре-
зультате увеличения температуры до 68 °С или в 
результате увеличения концентрации свободных 
электронов под действием света. В среднем ИК 
диапазоне ФП в VO2 инициируется тепловыми 
процессами. Разогрев пленки VO2 излучением 
среднего ИК диапазона возникает в основном в 
результате поглощения оптического излучения 
плазмой свободных носителей заряда, кото-
рая в процессе релаксации накопленной в ней 
энергии разогревает кристаллическую решетку 
материала. Однако может происходить и прямое 
поглощение излучения решеточной подсисте- 
мой, поскольку генерация фононов при погло-
щении полупроводниковой фазой VO2 излучения 
среднего ИК диапазона достаточно эффективна.

ФП в VO2 сопровождается значительным 
изменением комплексного показателя преломле-
ния (n* = n – ik). В табл. 3 показано изменение n* 
при переходе VO2 из полупроводниковой (s) в ме-
таллическую (m) фазу для разных длин волн. Из 
таблицы видно, что наиболее сильное изменение 
n* происходит в среднем ИК диапазоне. 

В качестве ограничителя излучения может 
быть использовано многослойное интерференци-
онное зеркало с пленкой VO2. В зависимости от 
конструкции зеркала [19, 20] может быть обеспе-
чена модуляция либо коэффициента отражения, 
либо коэффициента пропускания в заданной об-
ласти спектра. Однако лучевая стойкость таких 
зеркал уменьшается по мере увеличения коли-
чества слоев [21]. Кроме того, в многослойных 
зеркалах не может быть получено эффективное 
ограничение в широком спектральном интервале. 
Поэтому для создания широкополосных ограни-
чителей среднего ИК диапазона использовались 
интерференционные системы, состоящие либо из 
одного слоя VO2, либо слоя VO2 с корректирую-
щим диэлектрическим слоем. 

Для уменьшения энергетического порога 
ограничения и расширения динамического 
диапазона ограничения могут быть использо-

ваны несколько пленок VO2, расположенных 
последовательно в сфокусированном лазерном 
пучке [22]. Однако оптимальным с точки зрения 
конструкции является ограничитель, в котором 
сфокусированное излучение многократно прохо-
дит через одну и ту же пленку VO2. Оптическая 
схема макета такого ограничителя показана на 
вставке рис. 9. Ограничитель состоит из зеркаль-
ного телескопа, между входным и выходным 
зеркалами которого расположен нелинейно-
оптический элемент – пленка VO2 на германие- 
вой подложке с корректирующим диэлектриче-
ским покрытием. Толщина пленки VO2 0,75 мкм. 
Пропускание нелинейно-оптического элемента 
для одного прохода излучения 80% в спектраль-
ном интервале 3–12 мкм. Ограничитель помещен 
в термостат, который стабилизирует темпера- 
туру вблизи ФП VO2.

Излучение, падающее на ограничитель, триж-
ды проходит через пленку VO2, одновременно 
при этом фокусируясь. В режиме ограничения 
в первую очередь происходит переключение 
центральной области пленки VO2, соответст
вующей третьему проходу излучения. Затем 
последовательно переключаются области, со-
ответствующие второму и первому проходам. 
При этом после переключения второй области 
снижается лучевая нагрузка на центральную 
часть пленки, предохраняя ее от разрушения 
излучением. Аналогично переключение первой 
области снижает лучевую нагрузку на вторую и 
третью области пленки VO2, обеспечивая надеж-

Таблица 3. Оптические константы VO2 в полупро-
водниковой и металлической фазах

λ, мкм n*s n*m

10,6

3,4

2,0

1,06

0,5

2,55 – i0,08

2,88 – i0,002

3,3 – i0,2

3,1 – i0,5

2,3 – i0,6

8 – i9

3,56 – i5,7

2,8 – i4,4

1,7 – i1,8

2,7 – i0,3

Eвых, Дж

Eвх, Дж

0,01

0,001

0,0001
0,0001 0,001 0,01 0,1 1 10

Рис.  9. Ограничение излучения трехпро-
ходовым ограничителем на основе VO2. 
λ = 10,6 мкм. На вставке – оптическая схема 
макета трехпроходового ограничителя излу-
чения для среднего ИК диапазона.
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ную работу ограничителя при высокой плотности 
энергии падающего излучения. 

Эксперименты по ограничению проводились 
на длине волны 10,6 мкм при tи = 20 мкс [23]. 
Температура германиевой подложки, на которой 
располагалась пленка VO2, была равна 55 °С. На 
рис. 9 показана экспериментальная зависимость 
энергии излучения на выходе ограничителя от 
энергии излучения на его входе. Как видно из 
рисунка, порог ограничения равен 0,8  мДж. 
Сложный вид кривой ограничения связан с про-
странственной динамикой переключения пленки 
VO2 [23]. Интегральный коэффициент ослабле- 
ния при энергии падающего излучения 26,5 Дж 
равен 1,5×104. Аналогичная зависимость была 
получена и для ограничения излучения в спект
ральном интервале 3,8–4,2 мкм. 

В ближнем ИК и видимом диапазонах для 
ограничения излучения также могут быть ис-
пользованы интерференционные зеркала с плен-
кой VO2. Однако их конструкция по мере умень-
шения длины волны усложняется, а начальное 
пропускание ограничителя уменьшается. Для 
решения этих проблем было предложено ис-
пользовать композитные среды с наночастицами 
VO2. Преимуществом композитных сред явля- 
ется возможность варьирования в широких 
пределах их оптических характеристик, в част-
ности, возможность увеличения начального 
пропускания. Наночастицы VO2 вводились в 
прозрачную полимерную среду (оптический 
эпоксидный компаунд, полиметилметакрилат) 
[24] либо синтезировались в порах нанопористых 
силикатных стекол [25, 26].

Рисунок 10 иллюстрируют нелинейно-опти
ческий отклик наночастиц VO2 в нанопористых 
силикатных стеклах с размером пор 17 и 7  нм 
[25, 26]. Концентрация наночастиц в стекле со-
ставляла 0,1%, начальное пропускание образцов 
в спектральном интервале 0,5–1,1 мкм – 50–60%. 
Измерения проводились в сфокусированном 
пучке на l = 1,06 мкм при tи = 10 нс. Из рисунка 
видно, что порог ограничения равен 10-9 Дж, а 
динамический диапазон ограничения превышает 
100. Аналогичные результаты были получены 
и для пикосекундной длительности лазерных 
импульсов.

Таким образом, композитные среды с на-
ночастицами VO2 обладают оптической нели-
нейностью, приводящей к ограничению нано- и 
пикосекундных лазерных импульсов видимого 
и ближнего ИК диапазонов. При концентрации 
наночастиц 0,01–0,5% такие среды обладают вы-
соким коэффициентом пропускания при толщи- 

не до нескольких миллиметров, что делает их 
пригодными для практического использования 
в качестве ограничителей лазерного излучения 
и быстродействующих оптических переключа-
телей. Композитные среды с наночастицами VO2 
могут быть использованы и в среднем ИК диапа-
зоне. Однако тепловой механизм нелинейности 
не позволяет получить низкий порог ограниче-
ния без фокусировки лазерного пучка. 

Для решения этой проблемы было предло- 
жено использовать композитные среды с на-
ночастицами галогенидов серебра, имеющими 
оболочку из островковой пленки серебра. Осо-
бенности ограничения излучения в таких средах 
описаны ниже.

2.3. Ограничители на основе 
композитных материалов 

с наночастицами галогенидов серебра

При фототермической обработке наночастиц 
галогенидов серебра на их поверхности возни- 
кает островковая пленка серебра. Это вызывает 
появление плазмонных резонансов в среднем ИК 
диапазоне, в том числе на l = 10,6 мкм [27, 28]. 
При воздействии импульсного 10-микронного 
излучения происходит обратимое изменение 
диэлектрической проницаемости ядра нано- 
частицы, приводящее к сдвигу полосы плаз- 
монного резонанса, увеличению амплитуды 
этого резонанса и ограничению излучения. 
Эксперименты показали, что композитный 
материал на основе наночастиц AgCl в ма-
трице из KI позволяет эффективно ограни-

Eвых, Дж

Eвх, Дж

10–7

10–9

10–

10–10 10–8 10–6

Рис. 10. Нелинейно-оптический отклик 
наночастиц VO2 в нанопористом стекле. 
λ = 1,06 мкм, τ = 10 нс.
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чивать микросекундные лазерные импуль-
сы с длиной волны 10,6  мкм (рис.  11). Раз-
мер наночастиц AgCl был равен 100–200  нм, 
их концентрация в матрице  – 5%. Из рисун-
ка видно, что порог ограничения составляет 
10  мкДж/см2, а полный динамический диапа-
зон ограничения достигает 104. Начальное про-
пускание образцов на l = 10,6 мкм было равно 
70–80%.

Теоретический анализ показал, что причиной 
возникновения оптической нелинейности в дан-
ном случае является пьезооптический эффект 
в наночастицах галогенида серебра в условиях 
плазмонного резонанса [27]. Изменение показа
теля преломления наночастиц при взаимодей-
ствии с полем электромагнитной волны приводит 
к спектральному сдвигу плазмонного резонанса 
и увеличению его амплитуды. Низкий порог 
ограничения обусловлен локальным усилением 
поля волны внутри наночастицы при плазмон- 
ном резонансе. 

2.4. Ограничители на основе композитных 
материалов с полупроводниковыми 

наноструктурами, имеющими 
металлическую оболочку

Выше было показано, что для снижения энер-
гетического порога ограничения могут быть ис-
пользованы эффекты локального усиления поля 
электромагнитной волны в условиях плазмонно-
го резонанса. Поэтому следующий цикл исследо-
ваний был посвящен нелинейно-оптическим эф-
фектам, приводящим к ограничению излучения 
видимой и ближней ИК областей спектра в ком-
позитных средах с наноструктурами, состоящи-

Eвх, мДж

Т, %
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Рис. 11. Ограничение излучения наноча-
стицами хлорида серебра в матрице из KI. 
λ = 10,6 мкм, τ = 1,5 мкс.

ми из полупроводникового (диэлектрического) 
ядра и металлической оболочки. Спектральное 
положение плазмонного резонанса таких струк-
тур сильно зависит от соотношения радиусов 
ядра и оболочки. Это позволяет смещать плаз
монный резонанс по спектру, в частности, 
сдвигать его из видимой области спектра в 
ближний ИК диапазон. Кроме того, в данном 
случае локальное усиление поля может приво-
дить к увеличению эффективной нелинейной 
восприимчивости не только металлического 
компонента, но и полупроводникового (диэлект
рического).

Для ограничения излучения в спектраль-
ном интервале 0,4–1,1  мкм наноструктуры с 
нелинейно-поглощающим ядром и металличе-
ской оболочкой представляют значительный 
интерес. Как показано в [29], в подобных на-
ноструктурах при светоиндуцированном на-
сыщении поглощения kc в ядре наноструктуры 
происходит увеличение сечения поглощения и 
рассеяния всей наноструктуры в спектральной 
области плазмонного резонанса (рис. 12).
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Рис. 12. Спектры сечения поглощения (а) и 
рассеяния (б) наночастиц с оболочкой из Ag 
и поглощающим ядром. 1 – kc = 0, 2 – 0,05, 
3 – 0,2, 4 – 0,5.
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Учитывая эффект локального усиления поля 
электромагнитной волны в ядре наночастицы 
при плазмонном резонансе, можно ожидать, что 
в таких средах будет возникать низкопороговое 
ограничение излучения.

В наших экспериментах исследовались на-
ноструктуры с оболочкой из серебра и ядром из 
нелинейного полупроводникового материала, 
обладающего фотоиндуцированным изменением 
поглощения [30, 31]. Рассмотрим два типа таких 
наноструктур с ядром из полупроводникового 
материала, в котором под действием излучения 
происходит насыщение примесного поглощения:

1)  с ядром из ZnO, легированного серебром 
(ZnO:Ag), спектральный интервал нелинейно-
оптического отклика 0,5–0,6 мкм;

2)  с ядром из HgO, легированного серебром 
(HgO:Ag), спектральный интервал нелинейно-
оптического отклика 0,8–1,1 мкм.

Оболочка из серебра на наноструктурах фор-
мировалась методом химического осаждения. 
Толщина оболочки выбиралась таким образом, 
чтобы плазмонный резонанс наноструктуры по-
падал в спектральную область воздействующего 
лазерного излучения. Необходимо отметить, что 
наночастицы ядра имели неправильную форму, 
что оказывало влияние на спектральное по-
ложение и спектральную ширину плазмонных 
резонансов конечных наноструктур. В качестве 
прозрачной матрицы для наноструктур исполь-
зовался полиметилметакрилат. Концентрация 
наноструктур в матрице составляла 0,1–0,05%. 
Исследовались образцы композитных материа-
лов толщиной 3–6 мм. Линейный коэффициент 
пропускания образцов в спектральном интервале 
0,5–1,1 мкм был равен 70–80%. 

На рис 13 показаны экспериментальные зави-
симости коэффициента пропускания от плотности 
энергии воздействующего излучения для компо-
зитов, содержащих наноструктуры с оболочкой из 
серебра для λ = 0,53 и 1,06 мкм при длительности 
лазерного импульса 10  нс. Из рисунка видно, 
что характерной особенностью оптического от-
клика для данного типа наноструктур является 
уменьшение коэффициента пропускания при 
плотности энергии падающего излучения Евх = 
= (2–3)×10–7 Дж/см2. Наблюдаемый эффект огра-
ничения излучения связан с насыщением при-
месного поглощения в ядре наноструктуры, что 
приводит к увеличению амплитуды плазмонного 
резонанса и к росту сечения поглощения и рас-
сеяния наноструктуры в целом.

Таким образом, рассмотренные типы компо-
зитных сред позволяют ограничивать лазерное 
излучение видимого и ближнего ИК диапазонов 
на энергетическом уровне (2–3)×10–7 Дж/см2, что 
соответствует уровню, безопасному для органов 
зрения. Однако динамический диапазон ограни-
чения таких сред невелик. Поэтому для защиты 
органов зрения в широком диапазоне энергий 
лазерного излучения был разработан двух- 
каскадный ограничитель, описанный ниже.

3. Двухкаскадный ограничитель 
лазерного излучения

По результатам исследований, проведенных 
в Институте лазерной физики, и на основе пред-
варительного макетирования и лабораторных 
испытаний был разработан макет двухкаскадного 
ограничителя излучения для защиты органов 
зрения наблюдателя. При выборе подхода к 
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Рис. 13. Экспериментальные зависимости коэффициента пропускания от плотности энергии воздей-
ствующего излучения для композитных материалов с наноструктурами, имеющими полупроводни-
ковое ядро и оболочку из серебра. а – ZnO:Ag, λ = 0,53 мкм; б – HgO:Ag, λ = 1,06 мкм. τ = 10 нс.
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созданию принципиальной оптической схемы 
двухкаскадного макета мы исходили из необходи- 
мости макетирования таких оптических схем, 
которые были бы близки к наблюдательным при-
борам, выпускаемым промышленностью. В таких 
наблюдательных системах используются входные 
апертуры до 80 мм и увеличение 10×.

Исходя из этих соображений, а также из 
необходимости обеспечения нелинейно-опти- 
ческой защиты органов зрения наблюдателя, 
нами были выбраны основные параметры раз-
рабатываемого двухкаскадного макета. Первый 
каскад ограничения представляет собой жидкую 
нелинейно-оптическую среду на основе суспензий 
углеродных фуллереноподобных наночастиц  – 
астраленов в водно-спиртовых растворителях. 
Этот ограничитель расположен в сфокусирован-
ном пучке для снижения порога ограничения. 
Применение высококачественной сферической 
оптики позволяет снизить порог ограничения в 
такой системе до 10–5 Дж. Второй каскад ограни- 
чения представляет собой твердотельную пла-
стину композита с полупроводниковыми нано
частицами, помещенную вблизи второй фокаль-
ной плоскости. Энергетический диапазон его 
функционирования 10–5–10–7 Дж, а энергетиче-
ский порог ограничения – не хуже 10–7 Дж. 

Упрощенная оптическая схема разработанно-
го макета приведена на вставке рис. 14. Объек- 
тив макета представляет собой высококачествен-
ную апохроматическую систему из 3-х элементов 

с одной асферической поверхностью. Диаметр 
входного зрачка 80  мм, фокусное расстояние 
объектива 240  мм, относительное отверстие 
1/3. За счет исправления аберраций достигается 
высокая плотность энергии в фокальном пятне 
(более 90% в кружке диаметром 12  мкм при 
λ  =  532  нм и более 85% в кружке диаметром 
14 мкм при λ = 1064 нм). Полевая диафрагма в 
совокупности с оборачивающей системой обе-
спечивают фильтрацию рассеянного излучения, 
возникающего в процессе ограничения. По-
следний блок оптической схемы представляет 
собой окуляр. Общая кратность наблюдательной 
системы М = 10×.

Испытания макета ограничителя проводи- 
лись на двух длинах волн – 0,53 мкм и 1,06 мкм, 
при длительности лазерного импульса 10 нс. Ре-
зультаты испытания первого каскада макета на 
λ = 0,53 мкм показаны на рис. 14. Порог ограни-
чения двухкаскадного макета равен 7×10–7 Дж. 
При Евх = 3,6 мДж плотность энергии на выходе 
макета составляет 1,2 мкДж/см2. Коэффициент 
ослабления излучения на λ = 0,53 мкм – 1760.

Порог ограничения двухкаскадного макета на 
λ = 1,06 мкм равен 5×10–7 Дж. При Евх = 4 мДж 
плотность энергии на выходе макета составила 
3,4  мкДж/см2, а коэффициент ослабления из-
лучения на λ = 1,06 мкм – 2150.

Выводы

Исследования, проведенные в Институте ла- 
зерной физики на протяжении последних  лет, 
позволили создать ряд новых нелинейно-опти
ческих сред, обеспечивающих эффективное 
и низкопороговое ограничение излучения в 
видимом, ближнем и среднем ИК диапазонах. 
Разработанные среды обладают нано- и пикосе-
кундным быстродействием и способны обеспечить 
защиту органов зрения и фотоприемных устрой- 
ств от ослепления и повреждения лазерным из-
лучением. На основе проведенных исследований 
были созданы и испытаны лабораторные макеты 
ограничителей излучения – прототипы оптиче-
ских защитных устройств, которые могут быть 
использованы при разработке новых приборов: 
зрительных труб и биноклей, лазерных локато-
ров, дальномеров и систем оптической связи.
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