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Введение

Разработка методов и технологий получения 
трехмерных полимерных микроструктурных 
элементов является  актуальной  для  различ-
ных областей современной науки и техники – 
электроника, связь, микромеханика, медицина, 
биология, информационная и лазерная техника, 
химия, приборостроение. Такие элементы востре-
бованы при создании  интегрально-оптических 
микросхем, элементов фотоники, биочипов, ка -
тализаторов, микродатчиков  физических  ве-
личин. 

Одним из возможных методов формирова-
ния трехмерных микроструктурных элементов 
является глубокая литография [1–5]. Совре-
менный уровень исследований в данной области 
характеризуется поиском перспективных мате-
риалов, источников излучения, процессов по-
лучения микроструктурных элементов, а также 
их возможных конфигураций при уменьшении 
характеристических размеров элементов и уве-
личении форматного  отношения  (отношения 
высоты микроэлемента к его ширине). Наилуч-
шие результаты обеспечивают процессы с исполь-
зованием в качестве экспонирующего излуче-
ния рентгеновских и ионных пучков, а также 
жест кого  ультрафиолета  [1–3].  Возможность 
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полу чения  элементов  с высоким  форматным 
отно шением при использовании рентгеновского 
и других типов коротковолнового излучения 
определяется их малой угловой расходимостью 
в веществе. Однако установки, базирующиеся 
на таких  источниках излучения, являются 
дорогостоящими и требуют  соблюдения  мер 
безопасности, а технологии не могут быть ис-
пользованы для массового производства деше-
вых компонент. В связи с этим актуальной яв-
ляется задача перехода на процессы с исполь-
зованием оптического излучения, в том числе, 
мягкого ультрафиолета. 

Основным используемым материалом явля-
ется негативный фоторезист SU-8 [4, 5]. Фото-
резист  представляет  собой раствор полимера 
со светочувствительными добавками  в  орга-
ническом растворителе, что позволяет нано-
сить на центрифуге слои толщиной в несколько 
микрон, из которых содержащийся в пленке 
растворитель выходит достаточно быстро. При 
увеличении толщины  удаление  растворителя 
затруднено  его  медленной  диффузией  через 
слой полимера и возможно только при высоко-
температурной  обработке.  Полное  удаление 
растворителя из слоя толщиной в сотни микрон 
является проблематичным. Присутствие оста-
точного растворителя  существенно  ухудшает 
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 качество микроструктурных элементов [4]. Та-
ким образом, актуальной является задача ориен-
тации на материалы, исключающие присутствие 
растворителя. 

В последние годы были разработаны новые 
фотополимеризующиеся материалы, основан-
ные на композициях жидких мономеров [6, 7] 
и не требующие использования растворителей 
для нанесения слоев. С целью увеличения вяз-
кости, что необходимо при получении микро-
структур с большим форматным отношением 
(высота/ширина), были разработаны фотопо-
лимеризующиеся композиции на основе акри-
ловых мономеров, содержащие неорганические 
наночастицы  [8].  Механизм формирования 
микроэлементов в таких материалах принципи-
ально отличается от механизма формирования 
микроэлементов в фоторезисте. Принцип работы 
фоторезистов основан на генерации светочув-
ствительным компонентом под действием света 
небольшого количества молекул кислоты. При 
последующей термообработке происходит ката-
литический процесс, в результате которого под 
воздействием образовавшейся кислоты поли-
мерное связующее фоторезиста сшивается, об-
разуя негативный рельеф. Механизм формиро-
вания микроэлементов в композициях на основе 
акриловых мономеров, в отличие от фоторезиста, 
основан на радикальной фотополимеризации в 
присутствии инициатора, в результате которой 
под действием излучения образуется твердый 
полимер. Вследствие большого положительного 
изменения показателя преломления в процессе 
фотополимеризации в материале наблюдаются 
эффекты самофокусировки света, позволяю-
щие компенсировать начальную расходимость 
оптического излучения. Закономерности фото-
полимеризации при самофокусировке наиболее 
детально исследовались применительно к за-
даче формирования микроэлементов на торце 
оптоволокна [9]. В работах [10, 11] показано, что 
в результате самофокусировки возможно полу-
чение структур с высоким форматным отноше-
нием при использовании длинноволнового из-
лучения с высокой расходимостью. 

В данной работе, в продолжение ранее вы-
полненных работ, исследованы закономерности 
формирования трехмерных  микроструктур 
контактным методом в наномодифицированной 
композиции на основе акриловых мономеров, 
факторы, определяющие размерные характери-
стики элементов микроструктур и возможности 
уменьшения характеристических размеров эле-
ментов и увеличения форматного отношения.

Условия эксперимента

Исследования проводили с использованием 
нового светоотверждаемого материала – нано-
модифицированной композиции на основе смеси 
акриловых мономеров с введением неорганиче-
ских наночастиц ZnO, описанной в работе [8]. 
С целью увеличения вязкости концентрация 
наночастиц была увеличена до 12 вес.%. Микро-
структуры формировались контактным методом 
[11] при наложении амплитудной маски на слой 
жидкой композиции, нанесенной на поверхность 
стеклянной подложки. Толщина слоя задава-
лась размером прокладок и менялась от 30 до 
300 мкм. Амплитудную  маску  (фотошаблон) 
изготавливали фотографическим методом при 
уменьшении (20×) исходного рисунка, изготов-
ленного на компьютере. Плотность амплитудной 
маски менялась от 0,5 до 2,5. В качестве иссле-
дуемой конфигурации использовался штриховой 
тест с изменением размеров элементов (ширин 
линий) и расстояний между ними. Экспонирова-
ние проводилось УФ-излучением с длиной волны 
365 нм.  Высоты элементов микроструктур и их 
поперечные размеры (ширины) измеряли, ис-
пользуя микроинтерферометр МИИ-4.

Экспериментальные результаты 
и обсуждение

Исследование зависимости высоты элемен-
тов микроструктур от экспозиции (рис. 1) пока-
зало, что уже на начальном этапе процесса фото-
полимеризации (при длительностях экспозиции 
до 10 с) формируется 50–70% конечной высоты 
микроструктуры, при дальнейшем увеличении 
экспозиции (до 20–30 с) происходит плавная 
достройка высоты. Кинетика роста элементов 
микроструктуры в высоту качественно анало-
гична кинетике роста толщины полимерного 
слоя в макрообъеме (без  наложения  маски). 
Однако закономерности фотополимеризации в 
микрообъеме имеют отличия. Так, скорость роста 
микроэлементов в высоту зависит от ширины 
линии в амплитудной маске и уменьшается с ее 
уменьшением. Высота элементов микрострук-
тур практически не зависит от расстояния между 
элементами и плотности шаблона. Конечная 
высота элементов может превышать заданную 
толщину слоя. 

Исследование кинетики роста микрострук-
турных элементов в ширину показало отличие 
от кинетики их роста в высоту. Так, процентное 
отношение начальной ширины (для экспозиции 
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до 10 с) к конечной ширине меньше соответст-
вующего отношения для высот микроструктур. 
Начальная  ширина  элементов существенно 
зависит от ширины линии в фотошаблоне, рас-
стояния между линиями и плотности шаблона 
и может составлять от 5 до 70% конечной шири-
ны (рис. 2). Скорость роста элементов в ширину 
практически не зависит от  ширины линии в 

Рис. 1. Зависимость высоты элемента микро-
структуры от длительности экспозиции. Ши-
рина линии в амплитудной маске: 100 мкм 
(1, 2, 3), 75 мкм (4, 5, 6), 50 мкм (7, 8). 9, 10, 
11 – кинетика роста полимерного слоя. Толщи-
на слоя: 30 мкм (1, 4, 7, 9), 100 мкм (2, 5, 8, 10), 
300 мкм (3, 6, 11). 
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Рис. 2. Зависимость ширины элемента микроструктуры от длительности экспозиции. Плотность шабло-
на: 2,5 (1, 2, 3, 4) и 1,2 (5, 6, 7, 8). Ширина линии: 100 мкм (1, 2, 5, 6) и 75 мкм (3, 4, 7, 8). Соотношение 
расстояние/ширина: 4 (2, 4, 6, 8) и 0,5 (1, 3, 5, 7). Толщина слоя 100 мкм.

амплитудной маске, но увеличивается с умень-
шением соотношения расстояние/ширина. Ши-
рина элемента (рис. 3) существенно зависит от 
расстояния между линиями (уменьшается с его 
увеличением) и плотности шаблона (увеличива-
ется с уменьшением плотности) и может быть 
меньше заданной ширины линии в амплитудной 
маске. Кинетика роста элементов в ширину и 
их конечные поперечные размеры не зависят 
от толщины слоя (рис. 4), что свидетельствует 
о формировании элементов с практически вер-
тикальными стенками.

Анализ кинетики формирования элементов 
при экспонировании через амплитудную щеле-
вую маску показал, что формирование элемен-
тов начинается с образования отвержденной 
 области в направлении распространения излу-
чения при значительных продольных и малых 
поперечных размерах. При дальнейшем увели-
чении экспозиции происходит увеличение по-
перечных размеров. Формирование элементов 
с малыми поперечными размерами при значи-
тельной высоте на начальной стадии процесса 
фотополимеризации, а также уменьшение по-
перечных размеров (относительно размеров, за-
данных в амплитудной маске) при увеличении 
расстояния между элементами является пози-
тивным фактором как с точки зрения уменьше-
ния характеристических размеров полимерных 
элементов, так и увеличения форматного отно-
шения. 

Наблюдаемое уменьшение поперечных раз-
меров элементов микроструктур при увеличе-
нии расстояния между элементами может быть 
свя зано с ингибированием процесса фотополи-
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меризации  кислородом  воздуха  [6, 10].  При 
увеличении расстояния между областями экспо-
нирования в результате увеличения содержания 
кислорода в соседних областях материала и его 
диффузии в область экспонирования, процесс 
фотополимеризации замедляется и происходит 
сужение элемента.

Большой научный и практический интерес 
представляет проблема слияния близко распо-
ложенных элементов микроструктур. Прове-
денные исследования позволили установить сле-
дующие закономерности. Слияние элементов 
микроструктуры происходит в результате обра-
зования полимерного слоя под темными обла-
стями амплитудной маски. Высота полимерно-
го  слоя  между элементами микроструктуры 
 увеличивается  при уменьшении расстояния 
между ними, увеличении экспозиции и умень-
шении плотности шаблона (рис. 5). Фотополи -
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меризация под темными областями амплитуд-
ной маски наблюдается даже при ее больших 
плотностях (более 2,5), то есть, при экспозициях 
существенно меньших порога  фотополимери-
зации. 

Механизмы, определяющие слияние близко 
расположенных элементов, в настоящее время 
не достаточно изучены. На основании имеющих-
ся представлений  можно  предположить, что 
 степень фотополимеризации  в  промежутках 
 между  элементами  может определяться  су-
перпозицией  трех  процессов:  ингибирования 
кислородом [6, 10], усадки светоотверждаемой 
ком позиции [7], а также предполагаемого в ра-
боте  [12]  процесса  диффузии  фоторадикалов. 
В результате этих процессов при уменьшении 
расстояния между элементами, вероятно, созда-
ются более благоприятные условия  для фото-
полимеризации  в промежутках  между  ними  – 
уменьшение  количества  кислорода,  уменьше-
ние толщины слоя вследствие усадки и, воз-
можно, увеличение  концентрации свободных 
радикалов. 

Анализ факторов, определяющих наимень-
шее расстояние между элементами, показал, что 
наименьшее расстояние практически не зависит 
от толщины слоя. Отношение наименьшего рас-
стояния к ширине линии постоянно для задан-
ной экспозиции и уменьшается с уменьшением 
экспозиции (рис. 6). При малых экспозициях 
(10 с) наименьшее расстояние между элемента-
ми микроструктуры практически не зависит от 
плотности шаблона. Таким образом, при малых 
экспозициях возможно уменьшение как харак-
теристических размеров элементов, так и рас-
стояния между ними. 

В результате исследований процессов фор-
мирования  микроструктур  с различной  кон-
фигурацией выявлены следующие закономер-
ности: сужение элементов к основанию, которое 
может быть связано с эффектом самофокуси-
ровки света; уменьшение ширин элементов по 
краям структур, которое может быть связано 
с ингибированием процесса фотополимеризации 
кислородом воздуха; уширение в точках пере-
сечения элементов структур, вследствие возмож-
ного влияния диффузионных процессов (рис. 7).

Заключение

На основании экспериментальных резуль-
татов представлено количественное описание 
процесса формирования микроструктурных эле-
ментов при УФ-отверждении наномодифици-

рованного акрилатного композита контактным 
методом. Установлена связь размерных харак-
теристик элементов полимерных микроструктур 
с экспозиционными параметрами, параметрами 
амплитудной  маски (оптической плотностью, 
шириной  линий  и расстоянием между ними) 
и толщиной слоя. Установлены закономерность 
и возможный механизм уменьшения попереч-
ных  размеров  элементов  микроструктур  при 
увеличении  расстояния  между  элементами. 
Выявлена особенность кинетики формирования 
элементов  – преимущественный  рост  на  на-
чальной стадии процесса в направлении распро-
странения излучения  при  малых  поперечных 
размерах, определяющая возможность умень-
шения ха рактеристических размеров элемен-
тов и увеличения форматного отношения. 

Работа выполнена при проведении НИР ГК 
П570 в рамках реализации ФЦП “Научные и 
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Рис. 6. Зависимость наименьшего расстояния 
между элементами микроструктуры от дли-
тельности экспозиции. Плотность шаблона: 1,2 
(1, 2, 3) и 2,5 (4, 5, 6). Ширина линии: 100 мкм 
(1, 4), 75 мкм (2, 5) и 50 мкм (3, 6). Толщина 
слоя 100 мкм.

(б)(а) (в)

Рис. 7. Размерные эффекты при формировании 
структур различной конфигурации: сужение 
микроэлементов к основанию (а), уменьшение 
ширины по краям (б), сглаживание углов (в).
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