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Введение

Робототехника развивается достаточно давно. 
Устройства, которые можно условно назвать 
роботами,  создавались  тысячелетия  назад. 
Большой всплеск интереса к автономным ме-
ханизмам  возник  и  в  эпоху  промышленной 
революции. Однако до 1930-х годов, когда в 
математике было формализовано понятие алго-
ритма, каждая система управления каким-либо 
механизмом  представляла  собой уникальное 
аппаратное решение, в алгоритмическом плане 
зачастую весьма простое. Теория алгоритмов за-
ложила начало такой науки об управлении, как 
кибернетика, а математическую суть сложных 
процессов управления стало возможным отде-
лить от их физического – биологического или 
технического – воплощения. Примерно с этого 
времени и начала зарождаться современная ро-
бототехника.

Однако потребовались еще десятилетия тех-
нического развития, чтобы роботы получили мас-
совое применение. К первому поколению таких 
роботов принято относить роботов с “програм-
мным управлением”  [1, с. 13],  выполняющих 
жестко заданную последовательность операций. 
Естественно, программные роботы немногим 
превосходят роботов “докомпьютерной эпохи”.

Второе поколение – это адаптивные роботы, 
в которых в процессе управления используется 
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обратная связь от среды, наличие которой явля-
ется обязательным условием гибкости поведе-
ния, его зависимости от текущей обстановки.

Термин “адаптивные роботы”, однако, недо-
статочно конкретен. Действительно, в теории 
управления часто адаптивными называются си-
стемы, хоть как-то реагирующие на информацию 
из внешней среды (т. е. просто очувствленные), 
и в то же время адаптивными могут быть назва-
ны и обучающиеся системы [2, с. 15].

Очевидно, диапазоны условий, в которых 
достигается адаптация тем или иным роботом, 
могут быть очень разными. В простейшем слу-
чае работает так называемая параметрическая 
адаптация, в которой на основе обратной связи 
от среды оптимизируется фиксированное число 
параметров закона управления.

К следующему поколению роботов относятся 
интеллектуальные роботы [3], для которых, од-
нако, не существует четкого определения. Как 
правило, полагается, что в этих роботах исполь-
зуются различные технологии искусственного 
интеллекта [1, с. 15] – распознавание образов, 
машинное обучение, базы знаний, механизмы 
логического  (или  иного)  вывода.  С функцио-
нальной точки зрения от этих роботов требуется 
максимальная автономность в максимально не-
детерминированных условиях.

Очевидно, что в основе этих классификаций 
лежит в первую очередь степень недетермини-
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рованности среды. Действительно, роботы перво-
го поколения работают в полностью детермини-
рованной среде. Такая среда может быть апри-
орно смоделирована, что устраняет необходи-
мость в получении из нее какой-либо информа-
ции в процессе функционирования робота. Если 
же неопределенность выражается в отсутствии 
информации о фиксированном числе парамет-
ров, то возникает необходимость в сенсорной 
подсистеме, обеспечивающей обратную связь 
от среды. Однако реализация такой подсистемы 
и методов обработки сенсорной информации 
может быть  очень  узкоспециализированной. 
Дальнейшее увеличение степени недетермини-
рованности среды (при сохранении автономности 
робота) заставляет уже говорить об интеллекту-
альных роботах. Таким образом, деление роботов 
на поколения весьма условно, поскольку неде-
терминированность среды может повышаться 
плавно.

По-прежнему основным ограничением интел-
лектуальности роботов являются их возможно-
сти в обработке сенсорной (и, в первую очередь, 
оптической) информации, вызванные сущест-
вованием “семантического разрыва” между мас-
сивами входной информации (например, ярко-
стями пикселов на изображении)  и теми тер-
минами, в которых  формулируются  человеком 
задачи, ставящиеся перед роботами, работаю-
щими в максимально недетерминированной
среде, в которой произвольно не только взаимное 
расположение объектов, но и сами типы объ-
ектов.

Таким образом, развитие роботов идет в на-
правлении повышения степени недетерминиро-
ванности среды, в которой осуществляется функ-
ционирование, при сохранении автономности 
роботов. Степень адаптивности и интеллектуаль-
ности робота напрямую зависит от эффектив-
ности подсистемы анализа поступающей инфор-
мации, зачастую имеющей форму изображений. 
Одной из ключевых проблем, возникающих при 
разработке новейших роботов, оказывается про-
блема анализа изображений в условиях высокой 
априорной неопределенности.

Роботы, функционирующие 
в недетерминированной среде

Традиционно роботы используются для вы-
полнения работ, монотонных или связанных 
с опасностью для жизни людей. По сфере при-
менения роботов можно условно разделить на 
следующие категории: промышленные, меди-

цинские, роботы для оборонных приложений, 
беспилотные летательные аппараты и роботизи-
рованные автомобили, роботы для сферы услуг, 
бытовые роботы.

Почти все из них, как правило, используются 
организациями, а не отдельными лицами. При 
этом либо робот функционирует в достаточно 
детерминированной среде (именно такие роботы 
обычно используются на производстве [1]), либо 
полностью или частично контролируется с по-
мощью телеуправления. Последнее характерно 
для робототехнических систем оборонного назна-
чения [4, 5] или роботов, используемых в меди-
цине и космосе [6].

Иными  словами,  у  роботов, работающих 
в недетерминированной  среде, компенсация 
неопре деленности осуществляется благодаря 
помощи человека-оператора. Часто эта помощь 
осуществляется косвенно,  например, с  помо-
щью размещения фотограмметрических меток, 
уменьшающих неопределенность при навига-
ции, однако, также существенно снижающих и 
адаптивность (диапазон сред) соответствующих 
робототехнических систем.

Кроме того, для этих целей используются 
специализированные  или дорогостоящие си-
стемы сбора информации. Например, лазерные 
3D-сканеры формируют “изображения”, непо-
средственно содержащие информацию о даль-
ности, тогда как для извлечения этой инфор-
мации из обычных изображений требуется пре-
одоление существенной неопределенности. Ги-
перспектральные приборы позволяют получить 
дополнительные признаки, в пространстве ко-
торых цели разных типов обладают лучшей раз-
делимостью, чем в признаковых пространствах, 
формируемых по обычным изображениям.

Конечно, использование дорогостоящих 
сенсоров  не  дает  полного  решения  проблемы 
функционирования  в  недетерминированной 
среде: в конечном итоге для работы в произ-
вольной среде все-таки необходимо повышать 
адаптивность  и  интеллектуальность  роботов. 
Именно низкая интеллектуальность и является, 
по мнению многих авторов, основной причиной, 
по которой телеуправляемые роботы во многих 
приложениях до сих пор обладают большей эф-
фективностью [6].

В этом смысле интерес представляют бытовые 
роботы, которые должны быть автономными 
(в противном случае они заменяются обычной 
бытовой техникой) и в то же время не содержать 
чрезмерно громоздких или дорогих сенсоров 
(в противном случае они не будут конкурентоспо-



7“Оптический журнал”, 77, 11, 2010

собны). Накладываются жесткие требования на 
отношение их стоимости к полезности, а также 
к компактности. Кроме того, условия функ-
ционирования этих роботов являются одними 
из наименее детерминированных. Как результат, 
рынок роботов этого типа стал развиваться позд-
нее других, хотя научные исследования в этом 
направлении начались весьма давно. И до сих пор 
в этой области имеется весьма четкое разделение 
между бытовыми роботами, приносящими при-
были от их продаж, и роботами, служащими 
средством отработки новых технологий на буду-
щее и поднятия престижа компании-разработ-
чика. Тем не менее, уже несколько лет назад 
доля парка роботов вне промышленности (зна-
чительную часть которой составляют именно 
бытовые роботы) составляла около 50% [1, с. 15].

Можно выделить следующие классы бытовых 
роботов:  роботы-игрушки, роботы,  выполняю-
щие работу по дому, роботы, взаимодействую-
щие с людьми (роботы, помогающие инвали-
дам или пожилым людям, приглядывающие за 
детьми или домашними животными: роботизи-
рованные инвалидные кресла, роботы-поводыри, 
роботизированные люльки).

Роботы-игрушки могут иметь существенную 
разницу как в цене, так и в функциональных 
возможностях. В простейшем виде эти роботы 
мало чем отличаются от обычных механических 
игрушек, в связи  с  чем их  стоимость  может 
быть крайне низкой. Однако наделение такого 
робота какой-либо функциональностью требует 
от него определенной адаптивности, а значит, 
и обработки сенсорной информации, для чего 
необходимо снабжать робота “бортовым” вычи-
слителем в дополнение к некоторым сенсорам 
и исполнительным механизмам. Многим изве-
стны роботы-игрушки, наделенные широкими 
функциональными возможностями по переме -
щению в пространстве  и  распознаванию  от-
дельных объектов. Такие роботы появились на 
рубеже тысячелетий, и несмотря на достаточно 
высокую стоимость, которая для первой версии 
AIBO (Sony), вышедшей в 1999 г., составила 
2500$, имели относительно высокую скорость 
продаж (порядка 20 000 экземпляров в год).

Также в конце 1990-х годов появились в мас-
совом производстве устройства, которые можно 
было бы назвать бытовыми роботами в полном 
смысле этого слова. Каждый из таких роботов 
должен был работать в своем помещении, которое 
априорно неизвестно, что сделало проблему их 
адаптивности принципиальной. При этом цена 
и потребительские  качества  были  изначально 

таковыми, что не могли непосредственно ком-
пенсировать стоимость разработки. Наиболее 
типичными автономными бытовыми роботами 
являются роботы-пылесосы. Первой моделью, 
выпущенной в 2002 г. фирмой iRobot, является 
Roomba. Затем появились роботы-пылесосы, 
выпущенные фирмами LG, Samsung и рядом 
других. К 2008 г. суммарные объемы продаж 
роботов-пылесосов в мире составили более по-
лумиллиона экземпляров в год.

Многие ранние версии этих роботов (т. е. на-
чала 2000-х годов) еще не были снабжены видео-
камерами. Навигация осуществлялась  пре-
имущественно на основе сонаров и некоторых 
дополнительных  вспомогательных  сенсоров 
(например, датчиков касания). В другом от-
носительно распространенном  типе  бытовых 
роботов – роботах-газонокосилках (например, 
в Robomow, выпущенном в 2003 г. фирмой 
Friendly Robotics) также использовались сонары. 
Сейчас, однако, бытовые роботы, снабженные 
видеокамерами и системами анализа изображе-
ний, обладают более высокой эффективностью 
при решении своих задач, что компенсирует их 
несколько более высокую стоимость и делает 
коммерчески  более успешными.  Кроме  того, 
появляется возможность реализации функций 
роботов-охранников.

Роботам, помогающим людям с ограничен-
ными возможностями, посвящено немало акаде-
мических исследований, но широкого распро-
странения они пока не получили. Видимо, это 
связано с  высокими  требованиями к надеж-
ности функционирования этих роботов и к их 
действительной интеллектуальности и, кроме 
того, с их высокой потенциальной стоимостью. 
К примеру, стоимость  “коммуникационного” 
робота Wakamaru (Mitsubishi), выпущенного 
в 2005 г., составила 15 000$ при отсутствии 
дополнительной полезной функциональности.

Таким образом, интересным примером ав-
тономных роботов, функционирующих в неде-
терминированной среде и существующих в ко-
личестве миллионов экземпляров, являются бы-
товые роботы, для которых лишь недавно стали 
широко применяться подсистемы технического 
зрения, позволяющие повысить эффективность 
функционирования.

Проблемы реализации зрительных 
систем бытовых роботов

Для расширения целевой группы потребите-
лей фирмы-изготовители бытовых роботов ста-
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раются сделать их максимально дешевыми, что 
сказывается на качестве используемых сенсоров 
и на производительности бортовых вычислите-
лей. В связи с этим большое внимание при раз-
работке уделяется различного рода оптимизации: 
разработке дешевых, но эффективных (по отно-
шению к решению стоящих перед роботом задач) 
оптических систем, высокопроизводительных 
алгоритмов обработки изображений и их адапта-
ции к особенностям встраиваемых процессорных 
систем, для реализации которых могут исполь-
зоваться цифровые сигнальные процессоры, про-
граммируемые логические интегральные схемы, 
а также мобильные процессоры.

В качестве оптических сенсоров в бытовых 
роботах чаще всего используются обычные ка-
меры (часто с весьма низким разрешением и чув-
ствительностью). Но нередко рассматривается 
возможность применения и других оптических 
систем. Наиболее популярными альтернативами 
являются так называемые “времяпролетные” 
[7, 8] и “панорамные” (или всенаправленные) 
[9, 10] камеры.

Времяпролетная камера регистрирует время 
прохождения света до точек сцены и формирует 
кадры, представляющие собой  карты  дально-
сти, хотя и достаточно  низкого  разрешения. 
Информация о дальностях до точек сцены пред-
ставляется весьма полезной при решении задач 
навигации и избегания препятствий.

Изображения, формируемые панорамными 
камерами, также облегчают решение ряда задач 
компьютерного зрения. В частности, облегчается 
задача построения карты помещения путем со-
поставления изображений в связи с их большой 
площадью перекрывания, легче решаются за-
дачи обзора помещений, что немаловажно для 
роботов-охранников. Подобные камеры могут 
использоваться и для построения стереоскопи-
ческих панорамных систем [11]. Типичным спо-
собом реализации дешевых панорамных камер 
сейчас является использование зеркала с кони-
ческой поверхностью (рис. 1).

Ограниченность аппаратных ресурсов при-
водит к тому, что на бортовых вычислителях 
бытовых роботов оказывается возможным вы-
полнять обработку изображений, обеспечиваю-
щую решение только основных задач, стоящих 
перед роботом. Базовой задачей, качество реше-
ния которой существенно  улучшается  благо-
даря использованию видеоинформации, является
задача составления карты помещения с одно-
временной локализацией робота на этой карте 
(SLAM – simultaneous localization and mapping).

Действительно, большое число работ в послед-
ние годы посвящено реализации SLAM именно 
с помощью видеокамер [12], тогда как несколько 
ранее более практичным признавалось исполь-
зование сонаров [13], и, как уже упоминалось, 
еще менее 10 лет назад большинство моделей 
бытовых роботов было оснащено только сона-
рами. Как правило, видеокамеры применяются 
не отдельно, а совместно с одометрами (и, воз-
можно, другими датчиками), обеспечивающими 
счисление  пути.  При  этом накапливающиеся 
ошибки счисления пути устраняются с помощью 
привязки по изображениям, а задача сопостав-
ления изображений, полученных с разных ра-
курсов, упрощается за счет использования ин-
формации о приближенном положении робота, 
оцениваемом на основании данных одометров. 

Задачи, не связанные с навигацией, но сопря-
женные с обработкой изображений, являются 
 более специфическими, поскольку  необходи-
мость их решения зависит от конкретного пред-
назначения робота. С другой стороны, нередки 
и задачи, которые не являются специфическими 
именно для бытовых роботов. К таким задачам 
относятся задачи обнаружения лиц, распозна-
вания выражений лица, жестов и др., которые 
имеют большое значение для неробототехни-
ческих приложений (охранных систем, систем 
дополненной реальности и проч.), но которые 
характерны и для так называемых “социальных” 
роботов [14–16]. К примеру, способностью рас-
познавать эмоции по выражениям лица наделен 
гуманоидный робот SDR-4X (Sony) [3, с. 303].

В отдельных случаях разработчики могут на-
делять свои модели роботов самыми разнообраз-
ными функциями анализа изображений, но все 

4

2

3

1

Рис. 1. Упрощенная схема пано-
рамного приемника с конической 
поверхностью. 1 – зеркало с кони-
ческой поверхностью, 2 – линза, 
3 – фотоприемник, 4 – объект.
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же основной интерес проявляется к функциям, 
обеспечивающим навигацию и управление дви-
жением. Задачи навигации, для которых может 
использоваться обработка изображений, вклю-
чают обнаружение препятствий, локализацию 
и картографирование [12], возврат на базу для 
подзарядки [17], следование за объектом [18], 
поиск заданного объекта [19].

В настоящее время существуют достаточно 
хорошо проработанные технологии решения 
данных задач, имеющие, однако, существенные 
ограничения при применении. Эти ограничения 
можно проследить на наиболее широко исполь-
зуемой технологии, которую можно было бы 
назвать одной из ключевых для современных 
систем обработки  изображений  в  робототех-
нике, – технологии отождествления сопряжен-
ных точек на изображениях, полученных с раз-
ных ракурсов. Здесь чаще всего используются 
методы отождествления ключевых точек, или 
точек интереса, на основе векторов локальных 
признаков, вычисленных по их окрестностям. 
Данные методы могут использоваться не только 
в задачах сенсорной локализации и картогра-
фирования,  но  также и при распознавании 
объектов. К примеру, в роботе AIBO (Sony) ис-
пользовались методы сопоставления на основе 
ключевых точек (разработанные фирмой Evolu-
tion Robotics)  для  распознавания предъявляе-
мых роботу карточек (рис. 2), связываемых с 
разными действиями.

Для того чтобы ключевые точки могли быть 
попарно отождествлены, векторы признаков у 
сопряженных точек должны быть очень похожи 
(в смысле выбранной метрики, в качестве кото-
рой обычно используется евклидово расстояние 
в пространстве признаков). Инвариантность 
локальных признаков обычно достигается лишь 
по отношению к линейным геометрическим и 
яркостным преобразованиям путем аффинной 
нормализации окрестностей ключевых точек 
и нормировки самого вектора признаков. Ин-
вариантность по отношению к несколько более 
сложным яркостным изменениям, вызванным 
изменениями условий освещения, может дости-
гаться путем использования цветовой информа-
ции [20]. В целом, однако, несмотря на большое 
разнообразие методов обнаружения и описания 
ключевых точек, все они работают в условиях 
низкой изменчивости сцен и условий съемки, 
что заметно ограничивает возможности их при-
менения.

Хотя используемые на практике методы ана-
лиза  изображений  и  повышают  допустимую 

степень недетерминированности среды, в кото-
рой функционируют роботы, они не устраняют 
проблему “семантического разрыва”, препят-
ствующую созданию интеллектуальных роботов. 
Сейчас расплывчатое понятие интеллектуаль-
ных роботов  все  чаще  заменяется  понятием 
когнитивных роботов, для которых прорабатыва-
ются более конкретные когнитивные функции, 
такие как  внимание  [21], обучение  [22, 23], 
способы представления знаний [24] и пр., ко-
торые неразрывно связываются с механизмами 
зрительного восприятия. При этом все большее 
внимание когнитивным роботам уделяется не 
только в фундаментальных, но также и в при-
кладных исследованиях [24–27].

Заключение

Развитие роботов следует по пути повыше-
ния  степени  недетерминированности среды 
функционирования. При этом до стижение ав-
тономности функционирования роботов оказы-
вается практически невозможным без исполь-
зования подсистем зрения, включающих методы 
обработки изображений, работающие в условиях 

Рис. 2. Демонстрация работы системы распозна-
вания ERSP фирмы Evolution Robotics, исполь-
зованной в роботе AIBO (Sony). Фотография 
сделана на выставке, проходившей в 2005 году 
в рамках Международного симпозиума Defense 
and Security.
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высокой априорной неопределенности. Интерес-
ным примером автономных роботов являются 
бытовые роботы, появившиеся лишь десять лет 
назад, но уже сейчас выпускающиеся в общем 
количестве более миллиона экземпляров в год.

Наиболее  проработанными технологиями, 
реализуемыми в масштабе реального времени 
на современных “бортовых”  вычислителях  в 
коммерческих мобильных роботах, являются 
технологии визуальной навигации и картогра-
фирования,  возвращения  на  станцию  подза-
рядки, избегания препятствий, распознавания 
небольшого числа объектов с низкой измен-
чивостью. При решении указанных задач еще 
остаются существенные проблемы, к которым 
можно отнести, например, сохранение работо-
способности в условиях изменения освещения 
или  при  взаимных  перемещениях  объектов 
сцен. В целом, эти проблемы связаны с различ-
ными аспектами изменчивости изображений, 
вызванными недетерминированностью среды.

Традиционные методы анализа изображений, 
функционирующие в условиях низкой измен-
чивости сцен, не могут способствовать дальней-
шему развитию автономных роботов по пути 
увеличения степени недетерминированности 
среды функционирования. Последнее требует 
создания интеллектуальных роботов, одними 
из  основных  компонентов  которых должны 
быть системы понимания изображений, сопря-
женные с системами внимания, обучения и пред-
ставления знаний.
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