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Введение

Метод Гартмана широко используется как в 
оптическом контроле [1], так и для измерения 
волновых фронтов в различных адаптивных 
оптических системах [2]. При всей простоте это-
го метода в недалеком прошлом он был недоста-
точно востребован из-за его потенциально более 
низкой (чем, например, у интерферометрии) 
точности и высокой трудоемкости. Ситуация 
резко изменилась с появлением ПЗС-матриц 
высокого разрешения и современной вычисли-
тельной техники. 

В настоящей работе описана новая матема-
тическая модель, позволяющая применять мо-
дифицированный метод Гартмана для изучения 
характеристик зеркал большого размера. При 
этом используется простая и недорогая схема, 
которая в сочетании с созданным программным 
обеспечением реализует достаточно точный и 
экспрессный метод. Кроме того, данная модель 
позволяет работать в условиях, когда нет воз-
можности использовать необходимые для клас-
сического метода оптические схемы и сложные 
устройства юстировки.

Описание схемы измерения

Суть метода чрезвычайно проста. Принципи-
альная схема показана на рис. 1. Исследуемое 

УДК 519.2, 51–73: 535

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МОДИФИЦИРОВАННОГО МЕТОДА ГАРТМАНА 

© 2010 г.    Д. М. Ляхов, канд. техн. наук

E-mail: dml62-46@mail.ru

ООО производственно-коммерческое предприятие “Союзмаркет”, Москва

Адаптивные зеркала больших размеров используются в различных оптических 
системах. При изготовлении подобных зеркал или управлении ими проводятся много-
кратные измерения их оптических поверхностей. В настоящей работе описан простой, 
недорогой, достаточно точный и экспрессный метод, специально разработанный для 
изучения характеристик названных зеркал. Для его реализации требуются только 
цифровая видеокамера, диафрагма с подсветкой рассеянным светом и программное 
обеспечение. При работе системы на экране монитора каждые 0,5 с появляется изо-
бражение геометрии оптической поверхности. Программа использует созданную ма-
тематическую модель модифицированного метода Гартмана.

Ключевые слова: модифицированный метод Гартмана, математическая модель, 
регрессионный анализ, адаптивная оптика, цифровая видеокамера, зеркало больших 
размеров.

Коды OCIS: 010.1080, 080.2740.

Поступила в редакцию 16.04.2010.

зеркало 1 размещается на определенном рас-
стоянии от диафрагмы 5 с отверстиями. С помо-
щью этих отверстий, подсвеченных сзади рассеи-
вающим экраном 4 (излучением от ламп 2), на 
диафрагме формируется система пятен (рис. 2). 
Экран 4 можно заменить светодиодами, каж-
дый из которых освещает соответствующее от-
верстие диафрагмы, заклеенное рассеивающей 
пленкой. 

Отраженное от зеркала изображение диа-
фрагмы проецируется объективом на матрицу 
цифровой видеокамеры 3, а результат записы-
вается в компьютер. Сравнение полученного 
изображения с эталоном позволяет вычислить 
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Рис. 1. Принципиальная схема установки.
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отклонения центров пятен от их теоретическо-
го положения. Используя полученные резуль-
таты, можно восстановить форму поверхности 
(абсолютные измерения). Если измеряются от-
клонения поверхности зеркала от ее первона-
чальной формы (относительные измерения), то 
в качестве эталона принимается первоначаль-
ная поверхность зеркала.

Математическая модель

В предлагаемой оптической схеме (рис. 1) в 
принципе требуется довольно сложная процеду-
ра определения взаимного расположения всех 
элементов. Чтобы этого избежать, создадим 
модель для координат центров отраженного от 
зеркала изображения пятен, которые образуют 
матрицу наблюдений Y. Размер этой матрицы 
2×n. Первый столбец состоит из n координат на-
блюдаемых точек по оси x, второй – по z. 

||(2L + 2XPA2)i, i/2L||2XPA1 +

+ 2L||(XPA2)′xn   (XPA2)′zn|| = Y,  
           (1)

где ||(2L + 2XPA2)i, i/2L|| – диагональная матри-
ца, состоящая из элементов вектор-столбца 
(2L + 2XPA2)/(2L), которые характеризуют из-
менение масштаба изображения в i-х точках при 
повороте и перемещении зеркала относитель-
но видеокамеры; L – расстояние от зеркала до 
диафрагмы, X – матрица, состоящая из столбца 
единиц и столбцов координат (x, z, y) заданных 
точек поверхности зеркала в трехмерном про-
странстве. При этом 
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где i = 1 – n, n – количество точек контроля, 
m – количество нелинейных базисных функций 
fi(x, z), описывающих геометрию оптической 
поверхности; B – вектор-столбец искомых ко-
эффициентов регрессии, P – матрица поворота и 
смещения точек в трехмерной системе коорди-
нат, состоящая из направляющих косинусов и 
констант сдвига, –
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Первая строка – константы сдвига.
Матрица направляющих косинусов Pp име-
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где α, β, γ – углы поворота системы координат.
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проекционные матрицы; (XPA2)′xn, (XPA2)′zn – 
частные производные от повернутой и сдвину-
той поверхности по новым координатам xn и zn. 
При этом зависимость между исходными и но-
выми координатами имеет вид

 11 .x z y xn zn=PA

Детально рассмотрим выражение

XPA1 = ||Δ1 + xip11 + zip21 +

+ f(xi, zi)Bp31Δ2 + xip12 + zip22 + f(xi, zi)Bp32||.  
(3)

Здесь f(x, z) – вектор-строка базисных функ-
ций, коэффициенты матрицы p21 и p31 соиз-
меримы. Значения координат точек меняются 
от нескольких сот миллиметров до нуля. По-
скольку значение f(x, z)B изменяется в преде-
лах нескольких десятков микрометров величи-
нами f(xi, zi)Bp в данном выражении можно пре-
небречь. 

Рис. 2. Вид диафрагмы, зафиксированный ви-
деокамерой.
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Рассмотрим выражение

XPA2 = Δ0 + xip13 + zip23 + f(xi, zi)Bp33.     (4)

Здесь все слагаемые соизмеримы, поэтому в 
дальнейшем в решении регрессионной задачи 
их надо учитывать.

Полагаем, что значения перечисленных 
углов (α, β, γ) таковы, что, разлагая синусы и 
косинусы в ряд Тейлора, можно ограничиться 
только элементами первого порядка. При этом 
получим
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Частные производные вектора XPA2 по новым 
координатам будут равны отношению произ-
водных от выражений для новых координат по 
старым координатам. Например, используя вы-
ражения (3) и (4), можно получить 
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Учитывая (5) и пренебрегая величинами вто-
рого порядка малости, формулу (6) можно упро-
стить 
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Преобразуем (1) к виду 
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Пренебрегая величинами второго порядка ма-
лости, получим
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С учетом (7) и (8) выражение (9) можно сделать 
более наглядным –
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где Xt – матрица теоретических значений коор-
динат эталонных точек по осям x и z. Выраже-
ние (10) приведем к виду
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где Y1 и Y2 – соответственно первый и второй 
столбцы матрицы Y, а Хt

1 и Хt
2 – соответственно 

первый и второй столбцы матрицы Хt.
Упрощая запись, получим
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Последнее выражение запишем в виде

 FΘ = Yp,                                 (11)

(10)
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где

– матрица базисных функций, 
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– вектор искомых коэффициентов регрессии,
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– вектор значений функций отклика.
Применяя метод наименьших квадратов, 

можно вычислить искомые коэффициенты по 
известной формуле

Θ = (FTF)–1FTYp.

Погрешность данной схемы измерений δ оп-
ределялась с использованием результатов ин-
терферометрического контроля геометрии оп-
тических поверхностей. Среднеквадратические 
значения изменений данных поверхностей от 
0,12 до 2,14 мкм. Погрешность вычислялась по 
формуле 
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где ygi – значение поверхности в i-й точке, най-
денное предлагаемым методом; yinti – значение 
поверхности, найденное методом интерферомет-
рии; δint – погрешность интерферометрии.

Модель (1) учитывает неточность взаимного 
расположения диафрагмы и контролируемо-
го зеркала (возможный поворот и погрешность 
масштаба при повороте и изменении расстоя-
ния до диафрагмы). Если полагать, что этих по-
грешностей нет, то модель приобретет вид моде-
ли классического метода Гартмана
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На практике в общем случае избежать пере-
численных погрешностей в данном методе не-
возможно, поэтому приходится определять углы 
поворота, смещения и учитывать неточность 

масштаба. Однако если в виде эталона вместо 
теоретических координат мы будем использо-
вать координаты, зафиксированные экспери-
ментально, то опять справедлива модель (12). 
Такой случай бывает, если мы сравниваем два 
состояния адаптивного зеркала до и после воз-
действия на него приводов (относительный ме-
тод). Это дает возможность идентифицировать 
влияние внешнего воздействия на изменение 
геометрии поверхности зеркала. 

Большую роль играет точность определения 
координат центров экспериментально зафикси-
рованных пятен, соответствующих отверстиям 
диафрагмы. Для этого используется некоторая 
аппроксимирующая модель, описывающая их 
границы [3], после чего вычисляются необхо-
димые центры. Погрешность определения ко-
ординат центра данным методом меньше 0,1 
пиксела. Данная величина определялась при 
использовании остаточной дисперсии S2 для от-
носительного метода, рассчитанной по формуле
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В этой формуле коэффициент 1/2 появился 
в силу того, что в относительном методе погреш-
ность измерения координат центра отверстий 
есть как в Y, так и в Xt.

При неоднократных измерениях различных 
оптических поверхностей полученные величи-
ны 2S/ms были меньше 0,1. Здесь ms – масштаб. 
При относительном методе систематические 
погрешности (например аберрации) взаимно 
компенсируются.

Примеры измерений

С помощью разработанных алгоритмов были 
созданы две программы – для относительного и 
абсолютного методов измерения. Они применя-
лись для измерения геометрии оптических по-
верхностей зеркал со свободными краями. В каче-
стве базисных функций использовались собствен-
ные колебания пластин со свободными краями 
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[2, 4]. Такой подход обеспечивает заданную по-
грешность измерений при минимальном количе-
стве ортонормированных базисных функций. 

Относительное измерение. Рисунок 3 по-
казывает измеренное с помощью созданной 
программы влияние центрального привода на 
геометрию адаптивного зеркала (АЗ). По каж-
дой оси функция вычислена в 32 точках. Раз-
меры отклонений Yrez даны в миллиметрах. 
В нашем случае контролировалось адаптивное 
зеркало с квадратной управляемой апертурой 
210×210 мм и 61 приводом, оптимальным обра-
зом размещенным по шахматной сетке [4]. Для 
диафрагмы Гартмана были определены следую-
щие параметры: 

1) тип решетки – квадратная, 2) число от-
верстий – 15×15 – 1, 3) область размещения пя-
тен на диафрагме – 420×420 мм, 4) диаметр от-
верстия – 5 мм, 5) расстояние от АЗ до диафраг-
мы – 2400 мм, 6) размеры матрицы цифровой 
видеокамеры – 1392×1040 пикселов. Точность 
данного метода ±0,02 мкм.

Абсолютное измерение. На рис. 4 приведено 
изображение поверхности АЗ. Точность измере-
ния ±0,03 мкм. 

Система может работать в режиме “живого” 
видео. При этом расчет одного изображения 
контролируемой поверхности длится 0,5 с. Та-
кой режим удобен при настройке адаптивных 
зеркал.

Данный метод и программы можно при-
менять в сложных условиях и при малых рас-
стояниях между контролируемой зеркальной 
поверхностью и диафрагмой. Подобная систе-
ма была поставлена на гравировальном стан-
ке. Расстояние от измеряемой поверхности до 
диафрагмы L = 120–250 мм, контролируемая 
апертура 100×100 мм, точность измерения гео-
метрии оптической поверхности ± 0,7 мкм, 
количество отверстий диафрагмы 10×10 – 1. 
Отверстия диафрагмы подсвечиваются свето-
диодами, при этом возрастает точность опреде-
ления координат центров световых пятен. Вся 
система измерений (диафрагма, подсветка и ви-
деокамера) заняла пространство высотой 70 мм, 
шириной и длиной – 220×220 мм. Система рас-
полагалась над измеряемой поверхностью.
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Рис. 4. Геометрия поверхности адаптивного 
зеркала.

Рис. 3. Влияние центрального привода на гео-
метрию зеркала.


