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Введение

Большинство методов компьютерного зрения, 
таких как выделение контуров, обнаружение 
и описание ключевых точек, разрабатываются 
для полутоновых изображений. При этом в мо-
бильных роботах зачастую цветные изображения 
перед началом обработки переводятся в полуто-
новые для снижения вычислительных затрат и 
используемой памяти. И все же цвет несет важ-
ную дополнительную информацию об объектах, 
присутствующих  на изображении.  Благодаря 
прогрессу оптики и бортовых вычислительных 
систем использование  цветовой  информации 
становится все более востребованным.

В настоящее время цвет часто используется 
как дополнительный относительно независимый 
канал информации. К примеру, популярным 
является использование цветовых гистограмм в 
задачах распознавания и сопровождения объек-
тов [1–3]. При этом основное внимание уделяется 
вопросам построения таких цветовых признаков, 
которые были бы инвариантны по отношению к 
изменениям условий освещения. Такие цвето-
вые признаки, как правило, не содержат про-
странственной информации. При построении цве-
товых гистограмм пространственная информа-

ция может использоваться лишь для исключе-
ния влияния фона на цветовые признаки объек-
та [4]. Также и в пространственных описаниях 
изображений цветовая информация  исполь-
зуется в весьма простой форме. Например, при 
выделении контуров цвет используется для более 
точного оценивания уровня различий между со-
седними пикселами.

Наиболее  характерным примером  незави-
симого рассмотрения пространственной и цве-
товой информации является составление “сме-
шанных” векторов признаков, описывающих 
объекты или ключевые точки на изображении, 
просто путем конкатенации пространственных 
признаков,  таких  как  SIFT  (Scale  Invariant 
Feature Transform) [5], вычисляемых по полу-
тоновому изображению, и цветовых признаков 
на основе гистограмм. В более сложном случае 
цветовые признаки могут вычисляться в под-
областях локальных окрестностей ключевых 
точек [6].

Хотя подобное раздельное извлечение про-
странственной и цветовой информации  с  ее 
объединением лишь перед распознаванием или 
сопровождением является весьма удобным, ве-
роятно, более тесное совместное использование 
этой информации на всех этапах обработки изо-
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бражения может позволить повысить эффектив-
ность решения указанных конечных задач.

В данной статье рассматриваются различные 
пути использования цветовой информации и на-
мечаются возможности более тесной интеграции 
цветовой и  пространственной информации в 
задачах извлечения контуров и описания клю-
чевых точек. В частности, предлагается метод 
выделения ключевых точек на основе цветовой 
пирамиды “разности гауссиан”, а также дескрип-
 тор ключевых  точек, строящийся на  основе 
локального  пространственного  распределения 
значений  цветового  тензора. Повышение  эф-
фективности решения задач обнаружения, опи-
сания и сопоставления особенностей изображе-
ний при использовании цветовой информации 
составляет  10–15% при увеличении  времени 
вычисления до трех раз.

Инвариантные цветовые признаки

Основной проблемой, рассматриваемой  в 
низкоуровневых  методах  цветового  анализа 
изображений, является изменение компонен-
тов цветового вектора каждого из пикселов при 
изменении ориентации видимых поверхностей 
и освещения объектов сцены. Инвариантность 
цветовых признаков означает неизменность их 
значений при изменениях условий съемки. Обо-
снование инвариантности цветовых признаков 
обычно осуществляется на основе фотометриче-
ских моделей процессов отражения и рассеяния 
излучения видимыми поверхностями.

Пусть R, G и B – компоненты яркости не-
которого пиксела. Простейшими признаками, 
для которых обосновывается определенная не-
чувствительность диффузной составляющей рас-
сеянного излучения к пространственной ориен-
тации поверхности, ориентации и интенсивно-
сти освещения, являются нормированные цве-
товые компоненты [1]
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Кроме того, тон оказывается инвариантным и к 
бликам [1].

При этом значение яркости такой инвариант-
ностью не обладает. По сути, именно яркость и 
исключается при всех указанных выше преоб-
разованиях. В результате цветное изображение 
разделяется на преобразованное цветное изо-
бражение, обладающее некоторой инвариант-
ностью к условиям освещения, и полутоновое 
яркостное изображение, такой инвариантностью 
не обладающее, что и обуславливает их даль-
нейшую сравнительно независимую обработку.

На основе преобразованного цветного изо-
бражения (включающего, например, компонен-
ты тона и насыщенности) далее, зачастую, стро-
ятся гистограммы распределения этих компо-
нентов в некоторой области, соответствующей 
объекту или окрестности ключевой точки.

Особенно эффективным, с точки зрения вы-
числений, является использование гистограмм 
цвета в задачах слежения. Как показывают экс-
перименты, производительность  современных 
мобильных процессоров достаточна для выпол-
нения слежения за объектом (к примеру, лицом) 
в масштабе реального времени. В то же время, 
в коммерческих бытовых роботах зачастую ис-
пользуются дешевые, сравнительно низкока-
чественные видеокамеры, которые в условиях 
недостаточно интенсивного освещения форми-
руют изображения с низкой цветовой насыщен-
ностью и зашумленной компонентой тона. В этих 
условиях одни только гистограммы цвета ока-
зываются не вполне  надежными,  и  цветовую 
информацию тогда необходимо дополнять ин-
формацией о пространственном распределении 
яркости.

Выделение контуров 
с использованием цветовой информации

Существует два основных подхода к выделе-
нию контуров на изображениях. В первом под-
ходе, который может быть назван глобальным, 
контуры выделяются как границы однородных 
(по некоторому признаку) областей. Во втором, 
локальном, подходе вместо выделения областей 
на изображении производится обнаружение кон-
туров как локальных резких изменений свойств 
изображения.

В глобальном подходе сегментация может вы-
полняться, например, методом роста областей: 
изображение сначала разбивается на малые об-
ласти, которые затем попарно сливаются, если их 
свойств достаточно похожи. В простейшем случае 
могут использоваться  яркостные характери-
стики (например, средняя яркость или какие-то 
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иные статистические моменты распределения 
яркости внутри областей). Глобальный подход 
естественным образом распространяется на слу-
чай цветных изображений (см., например, [7]), 
однако, здесь он не рассматривается, поскольку 
подобные методы сегментации, как правило, не-
достаточно быстрые для реализации на бортовых 
вычислителях.

Локальный подход к выделению контуров 
часто базируется на той или иной операции диф-
ференцирования (с выполнением сглаживания 
для подавления шумов, характерных для локаль-
ных методов). Классическими в нем являются 
операторы Робертса [8], Превитт и Собела [9].

Вместо поиска экстремумов первой производ-
ной от изображения в нем часто также прово-
дится поиск нулей второй производной в форме 
оператора Лапласа. Ниже приведены примеры 
масок для вычисления компонентов градиента 
и  оператора  Лапласа.  Важной  особенностью 
(при работе с цветными изображениями) по-
следней маски является ее центральная симмет-
ричность.
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Существует большое разнообразие более слож-
ных методов выделения контуров (например, ме-
тоды Канни [10] и Дериша [11]). Для отмечен-
ных методов отклик меняется линейно с измене-
нием перепада яркости, поэтому при выделении 
контуров на изображениях, содержащих высоко-
контрастные или низкоконтрастные  объекты, 
отклик может оказаться ниже порога обнаруже-
ния, что приведет к их неверному распознава-
нию. Существуют также и нелинейные (по уров-
ню отклика на перепад яркости) методы, напри-
мер метод Нагумо [12, 13], который также ис-
пользует в качестве основы оператор Лапласа.

Вполне естественно, что на цветном изобра-
жении могут быть выделены контуры между 
областями разного тона, но одинаковой яркости, 
которые отсутствуют на полутоновом изобра-
жении. Принято считать, что в среднем число 
выделяемых на цветном изображении контуров 
больше на 10% [14]. Кроме того, цветовая инфор-
мация может быть дополнительно использована, 
например, при отождествлении контуров в за-
дачах сопоставления изображений [15].

Очевидным и наиболее часто встречаемым 
расширением методов выделения контуров на 
случай цветных изображений является замена 

оценок частных производных функции яркости 
оценками этих производных от векторной функ-
ции цвета. В простейшем случае в каждой точке 
вычисляются производные отдельно для каж-
дого канала, после чего вычисляется длина цве-
тового вектора частных производных

2 2 2

( , )

( , ) ( , ) ( , ) ,

x y

R x y G x y B x y

∇ =

= ∇ + ∇ + ∇

f

 

    (1)

где f(x, y) = (R(x, y), G(x, y), B(x, y)) – векторное 
(цветное) изображение.

Дифференцирование изображения может 
осуществляться по любому из цветовых каналов 
(в том числе и после выполнения преобразова-
ния цветового пространства к HVS (Hue, Value, 
Saturation) или фотометрическим инвариантам 
[16]). Однако принципиальным остается вопрос, 
как осуществлять комбинирование этих про-
изводных. Модуль производной вычислить не 
представляет трудности путем суммирования 
модуля градиента в каждом из каналов [17, 18]. 
Проблема, однако, возникает при вычислении 
направления общего градиента, поскольку на-
правления в каждом из каналов могут быть про-
тивоположными. Более адекватным является 
использование цветового тензора [19]
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где f – цветное изображение, возможно, сгла-
женное, а fx и fy – векторы его частных произво-
дных. Определитель данной матрицы заменяет 
сумму модулей цветовых градиентов. На таком 
тензорном представлении основывается метод 
Кумани для выделения контуров [20]. На рис. 1 
представлен пример вычисления определителя 
матрицы G (выражение (2), рис. 1г) и модуля 
градиента (выражение (1), рис. 1д). При этом 
цветовой тензор дает более контрастные края при 
меньшем уровне шумов на однородных по цвету 
областях. Таким образом, этот подход оказыва-
ется предпочтительнее, чем вычисление модуля 
градиента.

Выделение ключевых точек 
с использованием цветовой информации

Обычно в методах на основе локальных ин-
вариантных признаков цветовая информация 
используется  лишь на  этапе  формирования 
дескрипторов ключевых точек. Однако эта ин-
формация может быть полезной и на этапе обна-
ружения самих ключевых точек. 
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Процедуры выделения ключевых точек, как 
правило, основываются на поиске локальных 
экстремумов на изображениях, подвергнутых 
свертке с некоторым оператором интереса, кото-
рый зачастую аналогичен операторам, исполь-
зуемым при выделении контуров. В связи с этим 
модификация методов выделения ключевых то-
чек с использованием цветовой информации мо-
жет также выполняться аналогичным образом.

Типичный способ выделения ключевых то-
чек состоит из следующих шагов: построение 
пирамиды разрешений путем сглаживания изо-
бражения гауссовыми функциями с различной 
шириной, попарное вычитание соседних слоев 
пирамиды. В результате в каждом слое получа-
ется оценка оператора Лапласа, примененного к 
изображению на разных масштабных уровнях.

Использование цветового оператора Лапла-
са удобно тем, что не требует вычисления на-
правления, что упрощает комбинирование про-
изводных по каждому из каналов и позволяет 
обойтись без цветовых тензоров.

Пусть Dr(x, y, s), Dg(x, y, s), Db(x, y, s) – “раз-
ности гауссиан” (результатов сглаживания изо-
бражения гауссианами с разной дисперсией s) 

для каждого из цветовых каналов. В простейшем 
случае результирующий оператор интереса мо-
жет быть выражен в форме

2 2 2( , , ) ( , , ) ( , , ) ( , , ).r g bD x y s D x y s D x y s D x y s= + +

Стоит отметить, что при Dr(x, y, s) = Dg(x, y, s) =
= Db(x, y, s) = v  результирующее  значение 
Dr(x, y, s) = 30,5v. Если же Dr(x, y, s) = v и 
Dg(x, y, s) = Db(x, y, s) = 0, то D(x, y, s) = v. Иными 
словами,  яркостные переходы дают больший 
отклик данного оператора, чем цветовые пере-
ходы. Можно предложить иной оператор
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который в обоих указанных случаях будет да-
вать одинаковый отклик D(x, y, s) = v.

Данная модификация дает незначительное 
улучшение выделения точек (около 1% допол-
нительных точек, выделение которых воспро-
изводится при съемке с разных ракурсов).

(д)

(а) (б) (в)

(г)

Рис. 1. Цветное изображение, представленное в виде компонентов RGB (а–в), и результат вычислений 
определителя цветового тензора (г) и модуля градиента (д).
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На рис. 2 приведен пример выделения ключе-
вых точек методом SIFT, оригинальным (по полу-
тоновым изображениям) и модифицированным 
с использованием выражения (3). В данном слу-
чае прирост числа выделенных точек составил 
15%, хотя в случае изображений с низкой цвето-
вой насыщенностью он приближается к нулю.

Ряд устойчивых ключевых точек, не выделен-
ных на полутоновом изображении, выделяются 
на цветном изображении модифицированным 
 методом. Подобные эксперименты подтвержда-
ют, что количество ключевых точек, выделяемых 
с использованием цветовой информации, уве-
личивается так же, как и число релевантных 
контуров, – примерно на 10%. Конечно, само 
число выделенных точек не может служить 
прямым показателем улучшения метода. Тем не 
менее, поскольку на полутоновых изображениях 
результаты оказываются идентичными, появ-
ление новых точек на цветных изображениях 
явно связано с использованием дополнительной 
цветовой информации.

Следует заметить, что комбинирование кана-
лов до вычисления разности гауссиан привело бы 
к обработке цветного изображения, эквивалент-
ной обработке полутонового изображения. По-

скольку основное время тратится на построение 
“пирамиды разности гауссиан”, вычислитель-
ные затраты по обнаружению ключевых точек 
возрастают почти в 3 раза. В связи с заметным 
увеличением времени обработки и умеренным 
возрастанием качества обнаружения ключевых 
точек цветовая информация на данном этапе 
анализа изображений в настоящее время исполь-
зуется далеко не всегда.

Вычисление дескрипторов 
ключевых точек с использованием 

цветовой информации

Инвариантность к условиям освещения в ме-
тодах анализа цвета обычно достигается путем 
цветового преобразования в каждой точке. При 
этом зачастую теряется информация о яркости 
точки, поскольку она не является инвариантной 
к уровню освещения. При описании ключевых 
точек более адекватной является цветовая нор-
мализация  по  фрагменту  в  целом  (например, 
путем деления исходных значений компонентов 
цвета на среднее значение яркости по фрагмен-
ту вместо индивидуального значения яркости 
пикселов).

(д)

(а) (б) (в)

(г)

Рис. 2. Цветное изображение, представленное в виде компонентов RGB (а–в), и результаты обнаружения 
ключевых точек методом SIFT без использования цветовой информации (г) и с ее использованием (д).
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Именно таким образом методы построения 
дескрипторов ключевых точек по полутоновым 
изображениям  достигают  инвариантности  к 
уровню освещения. В этих методах дескрипто-
ры, как правило, строятся на основе векторно-
го градиентного поля в окрестности ключевых 
точек. К примеру, в методе SIFT проводится 
построение гистограмм ориентации векторов 
градиента, а в методе SURF (Speeded Up Fea-
ture Transform) [21] дескриптор составляется 
из среднего значения компонентов градиента 
в 16 подобластях размера 5×5 пикселов, взятых в 
окне 40×40 пикселов вокруг ключевой точки.

Существуют разные способы комбинирования 
дескрипторов SIFT или SURF с цветовой инфор-
мацией [6, 22]. На удивление, вполне естествен-
ная замена полутонового градиента цветовым 
тензором, распространенная в методах выде-
ления контуров, не встречается в литературе 
применительно  к  построению  дескрипторов 
ключевых точек. Рассмотрим возможность моди-
фикации метода SURF, в которой в шестнадцати 
подобластях 5×5 вычисляются средние значения 
компонентов тензора G, введенного в выражении 
(2). Точнее говоря, в каждой подобласти R вы-
числяются следующие четыре признака:

где ||R|| = 25 – площадь области. Таким образом, 
получается 64-компонентный вектор призна-
ков, который по размеру соответствует вектору 
SURF-64. Этот вектор также нормируется для до-
стижения инвариантности к уровню осве щения. 
Извлечение корня проводится в целях получения 
значений векторов признаков, значения компо-
нентов которых совпадают по порядку величины 
с признаками SURF. Однако, как показывают 
эксперименты, если извлечение корня не прово-
дить или корень извлекать после суммирования 
(что позволяет уменьшить время вычисления 
признаков), то результаты сопоставления меня-
ются незначительно.

На рис. 3 представлен результат сопоставле-
ния одних и тех же ключевых точек с исполь-
зованием дескриптора SURF-64 и дескриптора, 
модифицированного на основе цветового тензора. 
В данном случае число ложных соответствий за 
счет использования нового дескриптора умень-
шается с 17 до 14 (общее число точек равно 39). 
Таким образом, число правильных соответст-
вий возрастает на 14%.

Следует отметить, что в силу одинаковой раз-
мерности  векторов  признаков  в  модифициро-
ванном дескрипторе отсутствует часть инфор-
мации, имеющая место в исходном дескрипторе. 
Несмотря на это, качество сопоставления улуч-
шается, по крайней мере, на ряде рассмотренных 
авторами примеров. Хотя в связи с тем, что де-
скриптор не расширяется, и часть информации 
(по сравнению с SURF-64) в нем замещается, 
реально подобрать примеры, в которых новый 
дескриптор будет давать меньшее число сопо-

ставлений.  Предварительные  эксперименты, 
однако, показывают, что в среднем качество 
сопоставления немного улучшается. Для более 
существенного повышения эффективности со-
поставления можно использовать вектор при-
знаков большей размерности, в котором вместо 
замены части информации в дескрипторе про-
исходило бы ее расширение.

Заключение

В работе рассмотрены различные способы 
использования цветовой информации в задачах 
анализа изображений, широко распространен-
ных в приложениях к мобильным роботам, а 
именно, в задачах выделения контуров, обнару-
жения и описания ключевых точек изображе-
ния. Установлено, что многие методы раздельно 
используют информацию о пространственном 
распределении яркостей и цветовую информа-
цию, например в форме гистограмм, т. е. про-
странственное распределение цвета учитывается 
мало. При этом известны методы, более активно 
использующие оба типа информации, например 
метод Кумани выделения контуров на основе 
цветового тензора, что приводит к повышению 
их эффективности.

В работе предложены модификации методов 
обнаружения ключевых точек и построения их 
дескрипторов, также использующие простран-
ственные характеристики цветных изображе-
ний. Предложены метод детектирования клю-
чевых точек на основе цветовой пирамиды “раз-
ности гауссиан”, модифицирующий способ вы-
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Рис. 3. Результаты сопоставления пары цветных изображений оригинальным методом SURF (а) и его 
модификацией на основе цветового тензора (б). Белыми линиями отмечены ложные соответствия.

(а)

(б)
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деления ключевых точек в методе SIFT. При этом 
благодаря тому, что оператор детектирования 
обладает центральной симметрией, комбиниро-
вание информации из разных цветовых каналов 
может осуществляться непосредственно без во-
влечения цветового тензора.

Также разработан метод построения векторов 
признаков ключевых точек, модифицирующий 
метод SURF. При этом вместо усреднения ком-
понентов  поля  градиента,  вычисленного  по 
полутоновому изображению, используется ана-
логичное усреднение компонентов цветового 
тензора. Полученный новый дескриптор имеет 
ту же размерность, что и SURF-64, что позво-
ляет надеяться на дальнейшее повышение его 
эффективности.

В целом, использование цветовой информа-
ции повышает качество работы методов выде-
ления и описания ключевых точек на 10–15% 
(как и в случае с методами выделения контуров), 
но при этом временные затраты на вычисления 
возрастают (до трех раз), что может быть критич-
ным при выполнении вычислений на встраивае-
мых процессорных системах.

ЛИТЕРАТУРА

 1. Gevers T., Smeulders A.W.M. Color-based object 
recognition // Pattern Recognition. 1999. V. 32. 
№ 3. P. 453–464.

 2. Nguyen H.T., Smeulders A.W.M. Template Tracking 
Using Color Invariant Pixel Features // Proc. Int’l 
Conf. Image Processing. Rochester, New York, USA. 
September 21–25 2002. P. 569–572.

 3. Gevers T., Stokman H.M.G. Robust Histogram Con-
struction from Color Invariants for Object Recog-
nition // IEEE Trans. Pattern Anal. Mach. Intell. 
2004. V. 26. № 1. P. 113–117.

 4. Noriega P., Bernier O. Real Time Illumination Invari-
ant Background Subtraction Using Local Kernel 
Histograms // Proc. British machine vision conf. 
Edinburgh, UK. September 4–7 2006. P. III:979.

 5. Lowe D.G. Distinctive Image Features from Scale-
Invariant Keypoints // Intern. Journal of Computer 
Vision. 2004. V. 60. P. 91–110.

 6. Zhang D., Wang W., Gao W., Jiang Sh. An Effective 
Local Invariant Descriptor Combining Luminance 
and Color Information // Proc. IEEE Int‘l Conf. on 
Multimedia and Expo. Beijing, China. July 02–05 
2007. P. 1507–1510.

 7. Zhu S.-C., Yuille A. Region competition: unifying 
snakes, region growing, and bayes/MDL for mul-
tiband image segmentation // IEEE Trans. on Pat-
tern  Analysis  and  Machine  Intelligence.  1996. 
V. 18. P. 884–900.

 8. Робертс Л. Автоматическое восприятие трехмер-
ных сцен // Интегральные роботы. М.: Мир, 1973. 
С. 162–208.

 9. Prewitt J.M.S. Object enhancement and extraction // 
Picture processing and Psychopictorics / Ed. by 
Lipkin B.S., Rosenfeld A. N. Y.: Academic Press, 
1970. P. 75–149.

10. Canny J.F. A computational approach to edge detec-
tion // IEEE Transactions on pattern analysis and 
Machine Intelligence. 1986. V. 8. № 6. P. 679–698.

11. Deriche R. Optimal edge detection using recursive 
filtering // Proc. 1st Int. Conf. Computer Vision. 
London, UK. June 8–12 1987. P. 501–505.

12. Comte J.C., Marquie P., Bilbault J.M. Contour detec-
tion based on nonlinear discrete diffusion in a cel-
lular nonlinear network // Intern. Journal of Bifur-
cation and Chaos. 2001. V. 11. № 1. P. 179–183.

13. Nagumo G., Arimoto S., Yoshisawa S. An active pulse 
transmission line simulating nerve axon // Proc. 
IRE. 50. 1962. P. 2061–2070.

14. Kanade T. Image understanding research at CMU // 
Proc. Image Understanding Workshop’87 II. 1987. 
P. 32–40.

15. Koschan A. Improving Robot Vision By Color Infor-
mation // Proc. 7th Int. Conf. on Artificial Intel-
ligence and Information-Control Systems of Ro-
bots. Bratislava, Slovakia. September 12–16 1997. 
P. 247–258.

16. Van de Weijer J., Gevers T., Smeulders A. Robust 
photometric invariant features from the color ten-
sor // IEEE Trans. Image Processing. 2006. V. 15. 
№ 1. P. 118–127.

17. Zenzo S.D. A note on the gradient of a multi-image // 
Computer Vision, Graphics, and Image Processing. 
1986. V. 33. P. 116–125.

18. Sapiro G., Ringach D.L. Anisotropic diffusion of 
multivalued images with applications to color filter-
ing // IEEE Trans. Pattern Analysis and Machine 
Intelligence. 1996. V. 5. № 11. P. 1582–1586.

19. Bigun J., Granlund J., Wiklund J. Multidimensio-
nal orientation estimation with applications to tex-
ture analysis and optical flow // IEEE Trans. Pattern 
analysis and machine intelligence. 1991. V. 13. № 8. 
P. 775–790.

20. Koschan A. A comparative study on color edge de-
tection // Proc. 2nd Asian Conference on Computer 
Vision. Singapore. December 1995. P. 574–578.

21. Bay H., Tuytelaars T., Van Gool L. SURF: Speeded 
Up Robust Features // Proc. 9th European Conf. 
on Computer Vision. Graz, Austria, 2006. V. 3951. 
2006. P. 404–417.

22. Meng G., Jiang Zh., Zhao D. The usage of color in-
variance in SURF // Proc. SPIE. 2009. V. 7495. 
P. 749508–7.


