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Визуальная одновременная локализация 
и навигация

Задачу составления карты роботом часто на-
зывают задачей одновременной локализации и 
составления карты (Simultaneous Localization 
And Mapping, далее SLAM [1]). Робот не только 
обязан составить карту, но и должен сделать 
это, изначально не зная своего местоположения. 
Проблему можно сформулировать двумя вопро-
сами робота: “Где я?” и “Как выглядит мир?”. 
Ответить на первый вопрос можно, только зная 
ответ на второй и наоборот. SLAM – одна из 
наиболее важных задач робототехники, реше-
ние которой ведет к созданию действительно 
автономных роботов [2]. В качестве основного 
устройства восприятия часто используется ла-
зерный сканер [3], однако в последнее время все 
больше возрастает интерес к системам на основе 
компьютерного зрения, так как такие системы 
пассивны, на порядок дешевле и компактнее, а 
поток информации в разы больше (что особенно 
важно в интерпретации сцен). Самым главным 
недостатком является срыв слежения и сопо-
ставления на слаботекстурированных или за-
свеченных  сценах  (например,  в однотонно 
окрашенных помещениях или при попадании 
яркого источника света в поле зрения камеры). 
В робототехническом сообществе глубоко изу-
чена проблема визуальной навигации (vSLAM) 
с двумя и более камерами и в различных ком-
бинациях с  другими  датчиками  [4–8].  Также 
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интерес представляют монокулярные системы, 
активно изучаемые как робототехникой [9], так 
и компьютерным зрением [10–12]. Помимо ро-
бототехнических, приложениями vSLAM также 
являются дополненная реальность и человеко-
машинные интерфейсы.

Времяпролетные камеры

Недавно благодаря развитию микроэлект-
роники стали доступны новые устройства для 
трехмерного восприятия – времяпролетные 
камеры (ВК, англ. time-of-flight camera). ВК-
устройство, работающее по схожему с лазерны-
ми сканерами принципу, основными частями 
которого являются излучатель (обычно инфра-
красный) и матричный  фотоприемник. Для 
каждого пиксела определяется время,  потре-
бовавшееся для путешествия света до объекта. 
Более подробно принципы работы ВК описаны 
в работе [13], в статье [14] ВК сравнивается со 
стереосистемой. 

Времяпролетные камеры сочетают плотность 
реконструкции лазерных сканеров и компакт-
ность систем на основе компьютерного зрения. 
Удачными  примерами  использования  данной 
технологии являются трехмерная реконструк-
ция [15],  захват  движения [16],  слежение за 
лицом [17], а также в человеко-машинных ин-
терфейсах.

В данной работе использовалась PMD-камера 
O3 с разрешением 64×48 пикселов и рабочей 
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дистанцией до 7 метров, соединенная с цветной 
веб-камерой с разрешением 640×480. Ошибка 
измерения  для  каждого  пиксела  составляет 
20–200 мм в зависимости от дистанции.

SLAM с времяпролетной камерой

Калибровка. ВК создает цифровую матрицу 
дистанций до объектов сцены в каждом пиксе-
ле, для вычисления трехмерных координат то-
чек необходимо откалибровать камеру (рис. 1). 
В соответствии с моделью перспективной про-
екции [18]
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где A – матрица внутренних параметров камеры
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получаем  выражение  для  трехмерной  точки 
(x, y, z), соответствующей пикселу (u, v) с глу-
биной r
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Для устранения дисторсии используется стан-
дартная полиномиальная модель. Калибровка 
выполняется с помощью метода Жанга [19] для 
обеих камер. Уравнения (3), (4) при r = 1 по-
зволяют получить соответствующий  луч  для 
каждой точки изображения веб-камеры. Помимо 
дисторсии измерения ВК содержат различные 
виды ошибок: случайные (ошибки дискретиза-
ции, квантовый шум, рассеяние света) и систе-
матические.

Имея декартовы координаты точек с ВК, мож-
но перепроецировать их на матрицу веб-камеры 
в соответствии с моделью (1) и найти соответ-
ствующие пикселы (рис. 2, 3).
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Рис. 1. Калибровка ВК.

Перепроецирование и трекинг. Алгоритмы 
трекинга (слежения) необходимы для опреде-
ления соответствующих точек на двух кадрах. 
Пригодные для трекинга точки предоставляет 
 алгоритм поиска особых точек (features). Для про-
изводительности в работе использован алгоритм 
трекинга оптическими потоками Лукаса–Канаде 
[20].  Для нахождения точек исполь зованы алго-

Рис. 2. Облако точек с разными дальностями.
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ритмы “Good Features To Track” [21] и FAST (Fea-
tures from Accelerated Segment Test) [22].

Отслеживая движение точек на изображениях 
с веб-камеры, можно перепроецировать их на 
ВК (1) и получить соответствия  трехмерных 
точек для последовательных кадров. С их по-
мощью  можно  просчитать  движение  между 

кадрами и,  интегрируя, получить траекторию 
камеры.

Имея три пары точек (l1, l2, l3) и (r1, r2, r3), 
можно  определить движение  [Rt],  отбросив 
лишние ограничения (для решения необходимы 
только 6 уравнений). Наиболее быстрым методом 
является прямой метод Хорна [23]

Рис. 3. Фрагмент реконструированного объекта (шкафа).
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После нахождения вращения, перемещение мо-
жет быть определено вычитанием центроидов
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К сожалению, прямое решение очень неустой-
чиво к выбросам, поэтому были использованы 
более надежные методы, описанные ниже. Од-
нако благодаря скорости прямое решение может 
быть использовано в составе алгоритма RANSAC 
(Random Sample Consensus) [24], что позволит до-
биться быстрого и надежного решения. RANSAC 
хорошо подходит и для создания алгоритмов в 
параллельной архитектуре.

Локализация. Для определения движения ис-
пользован алгоритм ICP (Iterative Closest Point, 
итеративный алгоритм близких точек), выравни-
вающий облака точек. Алгоритм был разработан 
независимо авторами работ [25–27] и является 
самым популярным для выравнивания облаков 
точек. Пусть  M = {mj|j = 1, …, Nm} – множе-

ство точек предыдущего кадра (модель), а G =
= {gi|i = 1, …, Ng} – множество точек текущего 
кадра (сцена). Тогда для каждой точки сцены 
определяется ближайшая точка модели
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Алгоритм ICP находит преобразование [R|t] 
с помощью итеративной минимизации наимень-
ших квадратов. В общем виде функцию ошибок 
можно записать как

( ) 2
,( , ) ,i j i jE R t w Rg t m= + −∑∑  

         (8)

где wi,j = 1 для соответствующих точек (gi, mi) 
и  нулю для несоответствующих.  Существует 
четыре  алгоритма  решения  этой  задачи  в  за-
крытой форме, подробный анализ выполнен в 
работе [28].

Данный  алгоритм  оказался  недостаточно 
устойчивым для определения движения по не-
большому количеству отслеживаемых точек, но 
приемлемо выравнивал полные облака на сценах 
с выраженной структурой.
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Увеличение надежности локализации. Для 
улучшения  детектирования  выбросов  можно 
использовать цветовую информацию. Из-за низ-
кого разрешения ВК в местах разрывов глубины 
сцены возникают “фантомные точки”, поверх-
ности, соединяющие грани разрыва. Так как 
разрывам в пространстве обычно соответствуют 
разрывы в  цвете  пикселов  на изображении, 
можно построить детектор выбросов на основе 
цветовой информации и распределении глубин 
[29]. Приняв предположение о гауссовом рас-
пределении измерений глубины, вычислим на-
дежность измерения для каждого i-пиксела

( )2/exp .i ij i j ds w d d σ⎡ ⎤= − −⎢ ⎥⎣ ⎦∑  
              (9)

Суммирование проводится по окружающим пик-
селам, а вес вычисляется из его цвета

( )/exp .ij i j cw c c σ= − −                   (10)

В результате получаем большую чувствитель-
ность детектора на равномерно окрашенных по-
верхностях, обычно соответствующих цельным 
поверхностям, надежно измеряемым ВК. Коэф-
фициенты σd и σg соответствуют характеристи-
кам камеры и настраиваются эмпирически.

Заключение

Времяпролетная камера позволяет получать 
облако точек в реальном времени без дополни-
тельных вычислительных затрат.  Уже сейчас 
разрешение и цена делают ВК достойной аль-
тернативой  стереосистемам.  Рассмотренная 
система была протестирована на разных сценах. 
Несмотря на фильтрацию приемлемые резуль-
таты были  получены только  на  сценах  с вы-
раженной структурой. Из-за небольшого угла 
зрения и низкого разрешения алгоритм ICP на-
много хуже справляется с выравниванием, чем 
при использовании лазерного сканера в каче-
стве основного сенсора.

На реконструированном фрагменте (рис. 4) 
видно, что лучшее качество достигнуто на детали-
зированных фрагментах (полка), а на более пло-
ских присутствует большое количество ложных 
кадров. Данные обстоятельства ограничи вают 
использование ВК в системах реконструкции 
однородных сцен, однако этот сенсор может быть 
идеальным решением для систем реконструкции 
небольших или детализированных объектов, об-
хода препятствий и распознавания образов.

Исследования  были  выполнены  на грант 
Федерального Министерства Образования и Ис-
следований Германии (BMBF) RUS09/24.
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