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СВЕРХСИЛЬНЫЕ ПОЛЯ
И СВЕРХБЫСТРЫЕ ПРОЦЕССЫ

Введение

В последние годы получили значительное 
развитие теория и практика создания лазерных 
систем для формирования сверхкоротких мощ-
ных световых импульсов. Важным элементом 
таких систем являются оптические компрес-
соры, назначение которых – скомпенсировать 
фазовую модуляцию, приобретаемую импульсом 
в процессе его генерации, растяжения и усиле-
ния и вернуть ему первоначальную форму и дли-
тельность с минимальными искажениями [1]. 

Дифракционные решетки, которые исполь-
зуются в оптическом компрессоре, нуждаются 
в защите от радиационного повреждения из-за 
высокой плотности лазерной энергии на их 
 поверхности. В настоящий момент наиболее 
 перспективным способом защиты является ис-
пользование решеток больших размеров, при 
которых энергия лазерного импульса распреде-
ляется по большой поверхности при относитель-

но невысоком пороге чувствительности к радиа-
ционному воздействию. Поскольку изготовление 
решеток больших размеров связано со значи-
тельными техническими трудностями, особое 
значение придается рассмотрению  составных ре-
шеток, представляющих собой наборы решеток-
фрагментов меньших размеров [2–5]. 

Решетки-фрагменты, образующие составные 
решетки компрессора, должны быть строго 
параллельны и согласованы между собой. На 
практике нет возможности полностью устра-
нить рассогласованность этих решеток, поэтому 
одним из наиболее важных аспектов является 
вопрос о влиянии рассогласований решеток-
фрагментов на форму огибающей и длительность 
сжимаемых в компрессоре импульсов, а также о 
допустимых параметрах рассогласований, при 
которых искажения импульсов незначительны. 
К настоящему времени разработаны модели рас-
чета изменения лазерного импульса при малых 
взаимных смещениях и поворотах решеток-
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фрагментов, представленные в литературе [6–8]. 
Тем не менее, существует потребность в простых 
и точных формулах, которые достаточным об-
разом описывают все возможные варианты рас-
согласований.

В настоящей работе рассматриваются до-
полнительные аспекты влияния различных 
рассо гласований дифракционных решеток, об-
разующих оптический компрессор, таких как 
отклонение от параллельности, а также малых 
взаимных смещений и поворотов решеток-
фрагментов составного компрессора на длитель-
ность сжимаемого импульса. Кроме того, пред-
ставлены результаты вычислений дифракцион-
ной эффективности и энергетических потерь на 
поверхности решеток в типичных случаях их 
применения в компрессорах.

Длительность чирпированного импульса 
после прохождения через компрессор

Рассмотрим вначале основные положения 
 теории формирования короткого светового им-
пульса с помощью дифракционных решеток 
лазерного компрессора. 

Короткий световой импульс с гауссовой фор-
мой огибающей

E(t) = A0exp(–t2/τ2)exp(iω0t)              (1)

имеет полуширину полосы частот ω–ω0 = 2/τ, где 
2τ – длительность импульса, а ω0 – центральная 
частота. После расширения в стретчере импульс 
получает фазовую модуляцию и становится чир-
пированным

E(t) = A1exp(–t2/T2)exp[i(ω0 + bt)t],        (2)

где Т – полуширина огибающей, T >> τ (2Т – дли-
тельность чирпированного импульса), b – коэф-
фициент, описывающий линейное возрастание 
частоты и получивший название квадратичного 
фазового чирпа [1]. При распространении такого 
расширенного импульса спектральные компо-
ненты с меньшими частотами идут впереди, а с 
большими – позади. Фурье-преобразование (2) 
дает

E(ω) = A2exp{–(ω – ω0)2T2/[4(1 + b2T4)]}.     (3)

Изменение частоты в промежутке времени от –T 
дo T равно 4(1 + b2T4)1/2/T. В предположении 
b2T4 >> 1 получается ω – ω0 = 2bT и, следователь-
но, bT = 1/τ. 

После усиления чирпированный импульс 
направляется в оптический компрессор, назна-
чение которого – восстановление его прежней 

формы и длительности. При прохождении через 
компрессор спектральные компоненты импуль-
са приобретают фазовый сдвиг Φ(ω), благодаря 
которому происходит фазовая демодуляция чир-
пированного импульса ввиду наличия угловой 
дисперсии компрессора. Функция фазовой демо-
дуляции компрессора может быть представлена 
в виде разложения

Φ(ω) = Φ0 + Φ1(ω – ω0) +

+ Φ2(ω – ω0)2 + Φ3(ω – ω0)3 + …,          (4)

где коэффициенты Φn = (dnΦ(ω)/dωn )/n! (n =
= 1, 2, 3…) вычисляются на частоте ω0. 

Если в разложении (4) ограничиться членом 
второго порядка и пренебречь слагаемыми бо-
лее высоких порядков ввиду их малости, тогда 
спектр импульса на выходе компрессора можно 
представить как

E(ω) = A1exp{–(ω – ω0)2T2/[4(1 + b2T4)]}×

× exp{i[Φ0 + Φ1(ω – ω0) + Φ2(ω – ω0)2]}.    
  (5)

Обратное Фурье-преобразование позволяет 
получить форму огибающей импульса на выхо-
де компрессора E(t) = A2exp(–4t2/Tи

2), где A2 – 
множитель, включающий амплитуду и фазу, 
общую для всех спектральных компонент. Для 
длительности импульса Tи получается следую-
щее выражение:

Tи = 2{τ2 + [(1/b) –

– 2(d2Φ(ω)/dω2)]2(1/τ)2}1/2, 
                  (6)

где d2Φ(ω)/dω2 вычисляется на частоте ω0. Член 
разложения (4) Φ0 представляет фазовый сдвиг, 
общий для всех спектральных компонент им-
пульса, а коэффициент Φ1 – групповую задержку 
центральной компоненты [2]. Эти коэффициенты 
не влияют на форму огибающей сжатого импуль-
са. Существенную роль в восстановлении формы 
импульса играет коэффициент второго порядка 
разложения функции демодуляции (4) [1–3], 
который определяет дисперсию групповой за-
держки и компенсирует влияние квадратичного 
фазового чирпа в формуле (2) и, таким образом, 
восстанавливает прежнюю гауссову форму им-
пульса. Члены разложения более высоких по-
рядков определяют отклонения от гауссовой 
формы [4]. 

При условии компенсации фазовой моду-
ляции чирпированного импульса с помощью 
функции демодуляции компрессора выполняется 
соотношение
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1/b = 2(d2Φ(ω)/dω2),                     (7)

при этом длительность восстановленного им-
пульса минимальна Tи = 2τ.

Формула (6) показывает, что, если ограни-
читься членом второго порядка в разложении (4), 
то минимальная длительность сжатого импульса 
определяется величинами b и τ, а также величи-
ной d2Φ(ω)/dω2, которая связана с геометриче-
скими параметрами компрессора. 

Параметры компрессора,
состоящего из двух решеток

Оптический компрессор, как правило, образу-
ется с помощью двух дифракционных решеток, 
рабочие поверхности которых параллельны и 
обращены друг к другу. Типичная схема ком-
прессора представлена на рис. 1. Для того чтобы 
определить коэффициент Φ2 разложения фазо-
вой функции демодуляции компрессора (4), не-
обходимо вычислить геометрический путь ОАВ 
(рис. 1) луча, отображающего распространение 
некоторой спектральной компоненты рассма-
триваемого импульса. При строгой параллель-
ности решеток импульс выходит из компрессора 
в направлении, совпадающем с направлением 
падения. Расстояния R (ОА), F (АВ) и S (АС) вы-
числяются с помощью расстояния между решет-
ками L и угла дифракции θd, который берется из 
формулы решетки

–sinθd = sinθi – K/ki,                      (8)

где K = 2π/d – волновое число решетки, d – пе-
риод решетки, ki = 2π/λ, λ – длина волны падаю-
щего света, θi – угол падения, θd – угол дифрак-
ции для минус первого порядка. 

Фазовая функция демодуляции Φ(ω) вычи-
сляется как набег фазы при прохождении им-
пульса через компрессор

Φ(ω) = (ω/с)(R + F) – 2πS/d.               (9)

Первое слагаемое в выражении (9) означает набег 
фазы при прохождении импульсом расстояния 
(R + F) между входом в компрессор и выходом 
из него. Второе слагаемое соответствует фазо-
вому сдвигу, который дифракционная волна 
приобретает при ее отражении на определенном 
участке поверхности решетки, в данном случае 
на расстоянии S от точки C, принятой за начало 
отсчета [1, 5]. 

Первая производная функции Φ(ω) равна 
отношению геометрического пути ОАВ (рис. 1) 
к скорости света и, следовательно, равна груп-

повой задержке спектральной компоненты в 
компрессоре

dΦ(ω)/dω = (1/с)(L/cosθd)[1 + cos(θi – θd)].   (10)

Вторая производная описывает дисперсию груп-
повой задержки

d2Φ(ω)/dω2 = –4π2Lс/(cos3θdω3d2).        (11)

С целью получения минимальной длительно-
сти сжатого в компрессоре чирпированного 
импульса (2) при идеальной параллельности 
его решеток необходимо оптимизировать три 
геометрических параметра так, чтобы дисперсия 
групповой задержки d2Φ(ω)/dω2 соответство-
вала уравнению (7) на центральной частоте ω0. 
Эти параметры – расстояние между решетками 
L, угол падения θi, который определяет угол 
дифракции θd согласно формуле решетки (8), и 
период решетки d.

Влияние отклонения от параллельности

На практике решетки, образующие компрес-
сор, не могут быть строго параллельны, поэтому 
необходимо выяснить, как изменяется фазовая 
функция демодуляции компрессора при пово-
роте одной из решеток на некоторый малый угол 
β. Схема хода лучей при отклонении от парал-
лельности изображена на рис. 2.

В данном случае фазовая функция демодуля-
ции компрессора Φβ(ω) (рис. 2) принимает вид
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Рис. 1. Схема оптического компрессора, образо-
ванного с помощью двух дифракционных реше-
ток, рабочие поверхности которых параллель-
ны и обращены друг к другу. θi – угол падения, 
θd – угол дифракции для минус первого поряд-
ка, L – расстояние между решетками. 
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Φβ(ω) = (ω/с)(R′ + F′) + 2πS′/d.            (12)

Можно показать, что, учитывая только величи-
ны первого порядка малости относительно угла 
отклонения от параллельности β, функция Φβ(ω) 
может быть представлена как

Φβ(ω) = Φ(ω) – βtgθdΦ(ω),                 (13)

где Φ(ω) вычисляется согласно выражению (9). 
В результате, появляется приращение дисперсии 
групповой задержки, что приводит к некоторому 
увеличению длительности сжатого в компрес-
соре импульса, для вычисления которой в фор-
мулу (6) вместо d2Φ(ω)/dω2 следует подставить 
d2Φβ(ω)/dω2. Таким образом, импульс выходит 
из компрессора не полностью демодулирован-
ным, т. е. продолжает оставаться частично 
чирпированным, и его длительность превышает 
минимальное значение 2τ. 

Указанное приращение дисперсии групповой 
задержки может быть приближенно описано 
следующим образом

d2Φβ(ω)/dω2 =

= d2Φ(ω)/dω2 + βtgθd8πL/(ω2dcos3θd).   
 (14)

Вычисления показывают, что, например, при 
L = 1 м, d = 1,7 мкм, λ0 = 1 мкм, θd = 65° и при 
длительности исходного импульса одна пикосе-

кунда (1 пc) увеличение длительности сжатого 
импульса составляет около 0,12 пс на 0,1 мрад 
отклонения от параллельности. Этот результат 
вполне хорошо согласуется с результатами вы-
числений длительности импульса при отклоне-
нии от параллельности решеток компрессора, 
которые представлены в литературе [2–8].

Неполная компенсация фазовой модуляции 
в компрессоре (т. е. не выполнение условия (7)) 
является причиной того, что импульс после 
прохождения через компрессор приобретает 
оста точную угловую дисперсию. Дифференци-
руя формулу второй решетки (рис. 2), можно 
определить угол α отклонения спектральной 
компоненты от направления распространения 
при идеальной параллельности решеток

α = βсosθd/сosθi.                         (15)

Спектральная компонента с частотой ω отклоня-
ется на угол α = (dα/dω)(ω – ω0) по отношению 
к направлению распространения центральной 
спектральной компоненты с частотой ω0. Фазо-
вые фронты указанных компонент располагают-
ся под таким же углом относительно друг друга. 
Поэтому, если x – координата в направлении, 
перпендикулярном к направлению распростра-
нения импульса, то фронты указанных ком-
понент отстоят один от другого на расстоянии 
x(dα/dω)(ω – ω0). Это дает соответствующее 
приращение первой производной фазы ΔΦ1 =
= x(dα/dω)(ω/c), которое можно рассматривать 
как дополнительную задержку или как увели-
чение длительности импульса [3]. Максимальное 
увеличение длительности импульса, связанное 
с присутствием остаточной угловой дисперсии, 
можно описать формулой

ΔTα = ωD(dα/dω)/с,                     (16)

где dα/dω = β2πсtgθd/(ω0
2dсosθi), D – максималь-

ный поперечный размер импульса. Здесь для рас-
чета dα/dω используется формула, отражающая 
зависимость θd от ω

dθd/dω = –2πс/(ω2dcosθd),               (17)

которая получена путем дифференцирования 
формулы решетки (8).

Оценочное значение ΔTα при указанных выше 
прочих параметрах и при поперечном сечении 
светового пучка диаметром 1 м составляет око-
ло 0,5 пс на 0,1 мрад угла отклонения решеток 
от параллельности β, что вполне согласуется с 
данными, опубликованными в литературе [2, 3]. 
Как видно, увеличение длительности импульса, 
полученное за счет остаточной угловой диспер-

Рис. 2. Схема оптического компрессора, обра-
зованного двумя дифракционными решетками 
при наличии малого угла отклонения от парал-
лельности β. θ′d = θi + α – угол дифракции на 
второй решетке. Формула решетки имеет вид
sin(θi + α) = –sin(θd – β) + K/k, α – угол отклоне-
ния от направления распространения луча при 
идеальной параллельности. 
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сии (16), в данном случае превышает увеличение 
длительности импульса, которое образуется за 
счет приращения фазовой функции демодуля-
ции компрессора, рассчитанное по формулам 
(6,  14). 

Влияние рассогласований
решеток-фрагментов компрессора

Если для изготовления компрессора исполь-
зуются решетки, составленные из решеток-
фрагментов, то необходимо учитывать, что все 
они могут иметь небольшие взаимные рассогла-
сования, такие как параллельные смещения 
вдоль поверхности составной решетки и в на-
правлении, перпендикулярном к ней, как по-
казано на рис. 3а, в.

При рассогласованиях этого типа дифрак-
ционные волны, отраженные от решеток-фраг-
ментов, входящих в состав одной решетки ком-
прессора, приобретают разность фаз, которая 
может служить причиной деструктивной интер-
ференции в дальней зоне, что может приводить к 
искажению импульса и к нежелательному пере-
распределению его энергии. Фазовый сдвиг, ко-
торый получается при параллельном смещении 
S одной из решеток-фрагментов относительно 
другой вдоль поверхности решетки (рис. 3a), 
определяется по следующей формуле:

ΔΦS = –2πS/d.                           (18)

Фазовый сдвиг ΔΦL, который получается при 
смещении ΔL одной из решеток-фрагментов 
относительно другой в перпендикулярном к 
поверхности решетки направлении (рис. 3в), 
определяется по формуле

ΔΦL(ω) = (ω/c)ΔL(cosθd + cosθi).          (19)

В обоих случаях наличие фазового сдвига, равно-
го π, приводит к значительному уменьшению 
суммарной интенсивности дифракционных волн 
в фокусе собирающей линзы. Для того чтобы 
избежать неблагоприятного влияния фазового 
сдвига, решетки-фрагменты должны быть фа-
зированы, т. е. ΔΦS и ΔΦL должны равняться 
целому числу 2π. Из формулы (18) следует, что 
решетки фазированы, когда смещение S равно 
целому числу периодов d, при этом профиль 
одной из решеток-фрагментов является продол-
жением профиля другой (рис. 3б). Кроме того, в 
этом случае нет  зависимости фазового сдвига от 
частоты, благодаря чему такой сдвиг не вносит 
дополнительного искажения функции фазовой 
демодуляции компрессора. В случае перпендику-
лярного взаимного сдвига решеток-фрагментов 
ΔL существует зависимость фазового сдвига от 
частоты, что может вызвать искажение функции 
демодуляции компрессора и остаточную угловую 
дисперсию. Оценочный расчет показывает увели-
чение длительности сжимаемого импульса 0,5 пс 
на 1 мм смещения решетки-фрагмента, в то же 
время ΔL около 0,5 мкм может быть достаточным 
для того, чтобы получить эффект деструктивной 
интерференции [5]. Таким образом, влияние фазо-
вого сдвига заметно более существенно. Поэтому 
при настройке компрессора фазирование решеток-
фрагментов может оказаться наиболее важным.

Перемещение решетки в произвольном на-
правлении можно рассматривать как сумму вы-
шеуказанных перемещений, что также приводит 
к суммарному фазовому сдвигу ее дифракцион-
ной волны. Устранение таких рассогласований, 
или фазирование решеток, можно производить 
путем перемещения одной из решеток отно-
сительно другой как вдоль поверхности, так и 
перпендикулярно к ней, а также в произвольном 
направлении.

Существуют рассогласования решеток-фраг-
ментов других типов, показанные на рис. 4а, б. 
На рис. 4а решетки-фрагменты находятся в од-
ной плоскости, причем одна из решеток повер-
нута на малый угол ψ вокруг оси y, перпенди-
кулярной к этой плоскости. На рис. 4б одна из 

(а)

(б)

(в)

Рис. 3. а – параллельное смещение решеток-
фрагментов вдоль поверхности решетки, б – 
параллельное смещение решеток-фрагментов 
вдоль поверхности решетки, когда профиль 
одной решетки является продолжением дру-
гой, в – параллельное смещение решеток-
фрагментов в направлении, перпендикулярном 
к поверхности решетки. 
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решеток-фрагментов повернута вокруг оси x, 
которая лежит в плоскости решеток и перпен-
дикулярна к штрихам. Дифракционная волна, 
отраженная от повернутой решетки, отклоня-

Рис. 4. а – поворот решетки-фрагмента на 
малый угол ψ вокруг оси y, перпендикуляр-
ной к общей плоскости решеток, б – поворот 
решетки-фрагмента на малый угол ψ вокруг 
оси x, которая лежит в плоскости решеток и 
перпендикулярна к штрихам.

0 0,1–0,1

0,5

0,25

Т, пс

a

в б

, , мрад

Рис. 5. a – увеличение длительности сжимаемого 
импульса составляет около 0,12 пс на 0,1 мрад 
угла β отклонения противолежащих решеток 
компрессора от параллельности при L = 1 м, 
d = 1,7 мкм, λ0 = 1 мкм, θd = 65°, длитель-
ность исходного импульса 1 пс, б – увеличение 
длительности импульса из-за остаточной угло-
вой дисперсии при указанных параметрах и 
диаметре поперечного сечения светового пучка 
D = 1 м составляет около 0,5 пс на 0,1 мрад угла 
β отклонения от параллельности, в – увеличение 
длительности сжатого импульса составляет око-
ло 0,6 пс на 0,1 мрад угла ψ поворота решетки-
фрагмента вокруг оси y, перпендикулярной к 
общей плоскости решетки (см. рис. 4a) и вокруг 
оси x, которая лежит в плоскости решеток-
фрагментов и перпендикулярна к штрихам (см. 
рис. 4б).

ется на угол α относительно дифракционной 
волны другой решетки.

Можно показать, что, если угол падения 
близок к автоколлимации, то в случае, изобра-
женном на рис. 4a, угол α можно рассчитать по 
приближенной формуле

α = ψ(sinθi + sinθd),                      (20)

а в случае, представленном на рис. 4б – по фор-
муле

α = ψ(cosθi + cosθd).                      (21)

Указанный угол отклонения α служит причиной 
запаздывания фронта одной дифракционной 
волны относительно другой, что при поперечном 
сечении импульса D приводит к увеличению дли-
тельности импульса, которое можно рассчитать 
следующим образом:

ΔTD = Dα/с.                            (22)

При диаметре поперечного сечения светового 
пучка D = 1 м, θi = 65° и длительности исходного 
импульса 1 пс увеличение длительности сжатого 
импульса составляет около 0,6 пс на 0,1 мрад 
угла отклонения ψ, т. е. может иметь значение, 
сравнимое с его длительностью. Зависимость α 
от частоты также приводит к наличию в сжа-
том импульсе остаточной чирпированности и 
угловой дисперсии при взаимодействии повер-
нутой решетки-фрагмента с противолежащей 
решеткой компрессора, что является причиной 
дополнительного увеличения длительности им-
пульса. Кроме того, взаимодействие таких волн 
в дальней зоне сопровождается интерференцией, 
что влияет на пространственное распределение 
интенсивности импульса. 

На рис. 5 показано сравнение увеличения 
длительности сжимаемого импульса при раз-
личных типах рассогласований, рассмотренных 
в настоящей работе, для конкретного примера 

компрессора с расстоянием между противоле-
жащими решетками L = 1 м и периодом решеток 
d = 1,7 мкм. Чирпированный импульс исходной 
длительности 1 пс с длиной волны λ0 = 1 мкм па-
дает на решетку компрессора под углом, близким 
к автоколлимации θd = 65°.

Потери энергии на поверхности решеток

В связи с тем что интенсивность усиленного 
импульса в компрессоре значительно возрастает, 
встают вопросы о дифракционной эффективности 
и о поглощении световой энергии на поверхности 
решеток. Для их выяснения были проведены 

x

x

y y

(а)

(б)

z

z

x

y z

z

z



44 “Оптический журнал”, 76, 11, 2009

расчеты методом интегральных уравнений для 
голографических решеток с синусоидальным 
профилем и золотым покрытием, которые ранее 
использовались в экспериментальных исследо-
ваниях [9], и показали высокую эффективность. 
Рассматривались решетки с 1710 мм–1 для дли-
ны волны λ = 1,064 мкм и с 1500 мм–1 для длины 
волны λ = 0,83 мкм при относительных глубинах 
канавок h/d = 0,25, 0,3, 0,35 и при нескольких 
углах падения, превышающих соответствующие 
углы автоколлимации на значения от 1° до 10°. 

Решетки с 1710 мм–1 обеспечивают эффектив-
ность 0,96 в непосредственной близости от угла 
автоколлимации при относительных глубинах 
канавок в пределах 0,3–0,35. Потери световой 
энергии на поверхности имеют значения 0,034 
при h/d = 0,3 и 0,032 при h/d = 0,35. При от-
клонении от автоколлимации на 10° эффектив-
ность снижается до 0,92 и 0,89, а потери также 
снижаются до 0,032 и 0,029 соответственно. При 
глубине канавки h/d = 0,25 эффективность не 
превышает 0,92 при автоколлимации и 0,91 при 
отклонении от автоколлимации на 10° потери со-
ставляют 0,036–0,037. 

Решетки с 1500 мм–1 в случае автоколлима-
ции при h/d = 0,3–0,35 имеют эффективность 
от 0,85 до 0,94 и потери от 0,036 до 0,038 соот-
ветственно. При отклонении от автоколлимации 
на 10° эффективность не снижается, а потери 
возрастают до 0,037 и 0,039. При глубине ка-
навки h/d = 0,25 эффективность составляет 0,71 
при автоколлимации и 0,72 при отклонении от 
автоколлимации на 10°, а потери составляют 
0,034–0,036. 

Таким образом, видно, что для достижения 
наибольшей эффективности около 0,94–0,96 
 относительная глубина канавки синусоидаль-
ной решетки должна быть не менее 0,3, при 
этом  потери световой энергии колеблются вбли-
зи 3–4%. 

Кроме поглощения на поверхности решетки, 
существуют некоторые потери световой энергии 
на стыках решеток-фрагментов. На рис. 6 изо-
бражены небольшие нерабочие области составной 

решетки, включающие области неопределенного 
профиля, которые образуются на краях решеток 
при их изготовлении, а также зазоры между 
решетками-фрагментами. В этих нерабочих обла-
стях происходит рассеяние света, которое можно 
оценить как произведение суммарной площади 
этих областей на дифракционную эффективность 
решетки и интенсивность света.

Заключение

Решетки-фрагменты составных решеток ком -
прессора имеют взаимные рассогласования раз-
личных типов. Дифракционная волна, отражен-
ная от одной из решеток-фрагментов, падает на 
решетки-фрагменты противолежащей решетки. 
При этом импульс разбивается на множество 
частей, испытывающих на себе влияние всех 
 рассогласований решеток-фрагментов, с которы-
ми он взаимодействует. Точный расчет влияния 
всех указанных рассогласований является до-
статочно сложной задачей. Взаимные повороты 
и сдвиги, перпендикулярные к поверхности 
ре шетки, приводят к неполной компенсации 
фазовой модуляции чирпированного импульса и 
появлению остаточной угловой дисперсии. Им-
пульс после сжатия в компрессоре продолжает 
оставаться частично чирпированным, вследствие 
чего его длительность превышает минимальную. 
Ввиду наличия угловой дисперсии волновые 
фронты спектральных компонент запаздывают 
относительно центральной компоненты, что так-
же ведет к увеличению длительности импульса. 

В настоящей работе получены формулы для 
вычисления приращения дисперсии групповой 
задержки при отклонении решеток компрессора 
от параллельности и для увеличения длительно-
сти импульса, связанного с присутствием оста-
точной угловой дисперсии. Показано, что увели-
чение длительности импульса за счет остаточной 
угловой дисперсии может превышать увеличе-
ние длительности импульса, которое образуется 
за счет неполной демодуляции фазовой функции 
компрессора. Получены формулы для вычисле-
ния углов отклонения дифракционных волн при 
относительных поворотах решеток-фрагментов 
и увеличения длительности сжатого импульса 
при таких поворотах. Представлено сравнение 
увеличения длительности сжатого импульса при 
различных типах рассогласований, рассмотрен-
ных в настоящей работе. 

При параллельных и перпендикулярных от-
носительных смещениях решеток-фрагментов 
отраженные от них дифракционные волны при-

Рис. 6. Области неопределенного профиля на 
стыках решеток и зазоры между решетками.



45“Оптический журнал”, 76, 11, 2009

обретают разность фаз, которая существенно 
влияет на распределение энергии импульса в 
дальней зоне. Относительные смещения решеток, 
сравнимые с длиной световой волны, приводят к 
нежелательным интерференционным явлениям. 
Получены формулы для расчета фазовых сдви-
гов при рассогласованиях этого типа. В связи 
со значительной интенсивностью усиленного 
сжатого лазерного импульса рассмотрен вопрос 
о дифракционной эффективности и поглощении 
световой энергии на поверхности решеток. По-
лучен диапазон глубин канавки синусоидаль-
ной решетки, который позволяет обеспечить 
наибольшую эффективность при минимальных 
потерях световой энергии. 

Корректировка сдвигов и поворотов всех 
решеток-фрагментов требует определения допу-
стимых параметров рассогласований и примене-
ния высокоточных механических устройств для 
юстировки компрессора. Критерием юстировки 
может служить, например, получение макси-
мальной интенсивности импульса в фокусе при 
 соблюдении найденных допустимых значе ний 
взаимных поворотов и сдвигов решеток-фраг-
ментов. При согласованной работе всех фрагмен-
тов составной решетки она должна восприни-
маться световым пучком как цельная, что дает 
воз можность получить максимальную согласо -
ванность противолежащих решеток компрессора.
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