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Определение физической нагрузки  
с использованием мимической активности
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Исследована возможность использования мультиспектральных изображений лиц для определения сте-
пени физической нагрузки человека. Разработанный алгоритм обработки мультиспектральных изображе-
ний был применен для анализа мимической активности лиц добровольцев без информирования последних. 
Алгоритмическая модель проходила верификацию для классификации исходных показателей и степени 
физических нагрузок. При применении алгоритма наилучшие результаты составляли 75%, что позволяет 
продолжить работу по его дальнейшему внедрению. Результаты опытов продемонстрировали потенциал 
использования мультиспектральных изображений для неинвазивного определения степени физических 
нагрузок человека.
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This study investigated the potential of using multispectral imaging for detecting physical stress on human 
being. Participants were recruited to obtain multispectral images and, a proposed facial muscle activity 
detection algorithm was established without background information. The algorithm model was verified with 
respect to physical stress ground truth, in order to classify the baseline and physical stress status. The algorithm 
achieved better results in the experiment with an accuracy rate of 75%, which will provide a foundation for 
future industrialization. Experimental results demonstrated that multispectral imaging, as a non-invasive 
method, has the potential to identify physical stress on humans.
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1. INTRODUCTION
As an important physiological index, physical stress 
(PS) has attracted increasing concern. The influence 
of physical stress on human healthy and specific di- 
seases (symptom) have been widely studied over the 
past decades [1–7]. In addition to its effects on health, 
PS is becoming increasingly important to the indus-
try given the response of the human body to varying 
degrees of fatigue [8–11]. Numerous effective non-
contact stress recognition methods have been pro-

posed. These methods are based on photo-electronic 
imaging and provide effective information for prac-
tical applications in commercial and health depart-
ments, especially in the fields of health management, 
fatigue driving recognition, and sports competi-
tion. In previous studies, stress can induce a compli-
cated chemo-electronic analysis procedure (hypo-
thalamic-pituitary-adrenal axis) [12–13], and heart 
rates (HR) are typical physical stress markers. The 
invasive method like electrocardiography [14–15]  
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and functional magnetic resonance imaging [16–17] 
technologies are widely used in stress recognition 
studies. However, these methods require the impos-
sible, that is, for participants to acquire coordina-
tion and non-contact data. Thereby, imaging-based 
stress recognition methods gradually received at-
tention from the industry. The stress induced ther-
mal signature, such as sweating [18–19], blood flow 
velocity [20], HR [21–22], and breathing [23] are re-
ported, followed by the effective extraction and ex-
tensive research on physiological parameters of the 
human body [23–26]. Facial features can be simply 
acquired by imaging technology and basically do not 
require human cooperation. This method is consis-
tent with non-contact and non-intervention trends 
in technology. Various face imaging recognition me- 
thods that are specific to PS are also predominant  
[27–33]. For example, the eye blink rate and duration 
of eye closure were employed for detection of fatigue 
occurrence due to sleep deprivation or directed atten-
tion [34–36]. In addition to these features, head pose 
and yawning behavior in facial video is also used  
[37–38]. Moreover, head-motion (shaking) behaviors 
due to fatigue in video were captured by a webcam 
[39–40]. However, no progress has been made in di-
rectly associating facial imprint signals with stress 
markers, though we successfully extracted weak 
thermal facial signals for this purpose [41–42].

In contrast to thermal imaging and other imag-
ing methods influenced by external temperature 
and environmental factors, hyperspectral imaging 
technology has been given increased attention in 
the field of biomedical information in recent years. 
This technology combines traditional imaging and 
spectral technology and simultaneously acquires the 

spatial and spectral information of an object to de-
termine the material characteristics of this object. 
Hyperspectral imaging has been widely used in vari-
ous fields, such as food, agriculture, medicine, geog-
raphy, and archaeology [43–48]. Figure 1 illustrates 
a hyperspectral image of a human face. The image 
shows that a hyperspectral image cube contains hun-
dreds or even thousands of narrow band image infor-
mation. Images of the same person’s face in varying 
wavelengths can provide effective information for 
extracting physiological parameters. Prior to this 
extraction, we have successfully used the hyperspec-
tral imaging system in extracting the psychological 
information of a face and obtain the emotional stress 
status [49–51]. However, the frame rate of hyper-
spectral imaging technology is low, thereby making 
the achievement of real-time images and extraction 
of real-time stress status infeasible. The time alloca-
tion for extracting facial information can be up to 
several minutes at a time; this duration seriously af-
fects the real-time and reliability of the algorithm. 
In this study, we will use a high-frame-rate multi-
spectral imaging (MSI) system to detect PS in the 
human body.

Although there are many ways to detect changes 
in physical stress by imaging technology, the follow-
ing problems may occur in practice: (1) Real-time 
signal denoising method is not perfect; (2) the se-
lection of region of interest (ROI) is immature and 
random. The existing research results show that a 
single ROI signal on face cannot realize correlation 
with a single emotion [52]. (3) The identification of 
physical stress still requires baseline data, and some 
recognized physical stress markers are no excep-
tion. For example, it is necessary to determine the 
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Fig. 1. Image examples and reflectivity of hyperspectral images at different wavelengths (λ).
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baseline heart rate so as to judge whether it is under 
physical stress based on the change rate. As a result, 
real-time monitoring of physical stress is challeng-
ing because background data (especially the baseline 
HR) are required as a reference.

In this work, the physical stress recognition algo-
rithm is constructed by extracting changes in facial 
muscle from real-time spectral signal. In response to 
the above problems, a model of facial muscle activ-
ity detection (FMAD) algorithm model is proposed. 
The main contributions of this work are as follows: 
(1) Multispectral imaging technology is used to ex-
tract real-time physical stress signals from human 
face. (2) Signal correlation of multi-subject facial 
region is obtained through multi-variant correla-
tion method, and ROI with the optimal correlation is 
selected to build the physical stress detection mod-
el. (3) Classification features are extracted by ROI 
muscle track motion change. (4) Finally, a physical 
stress detection model is constructed by tracking the 
motion signal to realize contactless physical stress  
recognition without background data of participants 
or baseline state information.

The remainder of this paper is organized as fol-
lows. Section 2 describes the experimental settings 
during MSI data acquisition. Section 3 introduces 
the algorithm model. Section 4 presents the analysis 
of the results. Section 5 provides a discussion and 
draws conclusions.

2. ACQUISITION OF PHYSICAL STRESS DATA

2.1. Subjects recruitment 
The participants were mainly recruited by posting ads 
in a newspaper. A total of 37 healthy volunteers and 
representing both genders participated in the experi-
mental trials. The participants fell in the age group of 
20–45 years with a mean age of 27 years and a stan-
dard deviation of 10.17. All the participants provided 
their written informed consent to participate in this 
study. Among the 37 participant data, 25 will be used 
for algorithm training and the other 12 for testing.

2.2. Experimental protocol and acquisition set-up
A visible and near-infrared multispectral imag-
ing system covering the spectral wavelengths  
of 450–800 nm was used (we choose the orange light 
as ROI band with high signal to noise ratio and high 
sensitivity). It consists of a Tamron lens, a Brimrose 
AOTF imaging spectrograph, and a computer. The 
area CCD array detector of the camera (BM-141GE 
camera, Japan) has 1392(h)×1040(v) active pixels, 
and the spectral resolution is 2 nm. MATLAB and 
BAOTFIS software were used for data acquisition 
and analysis.

All the experiments performed in this study were 
conducted following more or less these three main 

steps: firstly, the participants were requested to 
wear a chest strap heart monitor (Garmin) and a fin-
ger probe (Miroxi) to measure their HR. Secondly, 
the participants were led to a well illuminated room 
where they sat down comfortably. A rest time was 
given to allow the participants to settle in their new 
environment. Thirdly, a physical stressors (running) 
will be given to the participants, followed by a recov-
ery period until the baseline. Figure 2 presents a de-
tailed overview of the experiment design. Figure 3 
displays the ground truth results after the test (HR). 
The participants showed significant increases in 
heart rate after the PS tests, thereby indicating that 
our experiments and stressor succeeded in inducing 
stress.

3. METHODOLOGY FOR PHYSICAL STRESS 
DETECTION
As mentioned in Introduction, in order to solve the 
problems in extraction of physical stress signals, we 
propose a FMAD algorithm, and the physical prin-
ciple is: сhanges (or jitter) of facial muscles under 
physical stress are significantly different from base-
line states. In order to extract the muscle changes, 
the main steps of the algorithm can be described in 
Fig. 4. Firstly, multispectral images of subjects were 
obtained during the experiment. Then, the facial 
signal was extracted and denoised from MSI. After-

Fig. 2. Timeline of the experiment.

200

180

160

140

120

100

80

60
5          10          15          20          25        30           35

Subject

H
R

 C
h

an
g

e 
R

at
e,

 %

Fig. 3. Changes in HR among the participants after PS.
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wards, facial ROI under physical stress was selected 
through the multi-variant correlation method. Af-
ter obtaining ROI, local binary patterns (LBP) and 
optical flow algorithms were used to track the mo-
tion trajectories of the feature points in the ROI re-
gion and extract the motion features from these 
motion trajectories. Moreover, physical stress and 
baseline were classified by long short-term memory 
(LSTM) algorithm. Finally, the contactless physical 
stress recognition model without background data of 
participants or baseline state information was con-
structed.

3.1. Signal denoise for MSI
It is efficient and practical to obtain face informa-
tion through contactless spectral imaging. How-
ever, noise has always been a problem in the indus-
try. The systematic error and noise caused by scat-
tering and path effect are large in the experimental 
process, which makes the acquisition of pressure fea-
tures difficult. In the meantime, external interfe- 
rence can also affect data. These problems cannot be 
solved in experiment or external environment, and 
the goal of non-contact and non-intervention cannot 
be realized. To this end, in order to reduce the influ-
ence of noise on the algorithm, the feature points are 
extracted through LBP algorithm model as a refe- 
rence in de-noising.

The commonly used median filtering, which can 
filter the noise and protect the edge information of 
the image from blur, was selected to filter the face 
image. 4 times 4 size sliding window traversed the 
image to filter and remove the noise so that the ima- 
ge becomes smoother for the subsequent processing. 
Afterwards, the feature points of face as a refer-
ence can also effectively suppress the effect of noise 
on image. Therefore, face image is conducted with 
multi-scale LBP feature processing. Multi-scale LBP 

features can describe local and global features of an 
image. The larger the image, the greater the scale. 
Our image pixel is 1392×1040 size, so we select the 
multi-scale LBP feature with the scale of 4 for pro-
cessing. 

Multi-block local binary patterns (MB-LBPs) were 
used to extract face feature points in order to prevent 
noise from affecting the quality of the face image. 
As shown in Fig. 5a, the original LBP operator is de-
fined in the neighborhood of pixel 3×3 size. The gray 
values of eight adjacent pixels are compared with the 
pixel values in the center of neighborhood by using 
the neighborhood central pixel as the threshold value.  
If the surrounding pixels are larger than the central 
pixel, the location of the pixel point is marked as 1, 
otherwise 0. In this way, eight points in the neigh-
borhood can be compared to produce an eight-digit 
binary number. The eight-digit binary number is 
arranged to form a binary number, which is LBP 
value of the central pixel. MB-LBP is an extension 
of basic LBP. An appropriate scale is selected to di-
vide the image area into multiple sub-area blocks, 
which are further divided into small areas. The LBP 
feature, namely, MB-LBP is obtained by comparing 
the gray value of the current small area with that of 
the surrounding small areas. As shown in Fig. 5b, 
this area block is 9×9 size, which is divided into  
9 small areas with the size of 3×3 size. The value is 
the average grey value of each small area, which is 
further compared. MB-LBP not only improves the 
fast extraction of facial information, but also en-
hances the robustness to noise. The degree of facial  
information extraction varies with different scales 
of MB-LBP. Through multiple experiments, we em-
ploy 4 times 4 size MB-LBP to extract and filter the 
facial signal.

3.2. Multi-subject correlation  
for ROI selection
After achieving the denoised signal, we analyzed the 
face signal in depth. It is necessary to identify the 
ROI before further identifying physical stress. This 
work aims to find out which parts of face are similar 
to each other in different participants under physi-
cal stress, and the feature signals with high similar-
ity can be used as our target signals. By relating the 
target signals with the stress matching, the target 

Fig. 4. Main steps of this study.
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Fig. 5. (a) Original LBP of 3×3, (b) multi-scale LBP of 3×3.
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signal with good correlation is taken as the research  
object to eliminate the dependence on the baseline 
data in the conventional approach.

Firstly, the areas sensitive to motion were defined 
as different objects as possible ROIs, such as left an-
gulus oris, right angulus oris, nose, forehead, left 
face and right face (Fig. 6). Therefore, we analyze 
the areas of the facial signals that are sensitive to PS 
and have a favorable inter-correlation. However, this 
sensitivity must be built on all participants. That is, 
the ROI signals of all participants must be sensitive 
to PS and have robust correlation. In constructing 
PS recognition system (without baseline data), the 
general mode of ROI response to PS is crucial. Many 
previous studies have not systematically studied the 
choice of ROI, especially the comprehensive analysis 
of multi-subject signals. Therefore, we must investi-
gate their correlation in this study. Simultaneously, 
only ROI signals with robust correlation can match 
the ground truth when the PS recognition system is 
applied to humans. Unlike the Pearson coefficient, 
the number of objects that we must build is great-
er than 2 (our participants are more than 2). The 
Pearson coefficient can only calculate the correla-
tion between two sets of data; therefore, we utilize a 
multi-variant correlation method [53–54] to analyze 
the interrelation between facial signals. This method 
is based on the zero-lag correlation matrix and ran-
dom matrix theory. Furthermore, this method can 
effectively detect and characterize spatiotemporal 
correlation patterns. In particular, the correlation 
can be constructed for multiple objects. If the num-
ber of subjects N is greater than 2, then the corre-
lation among the multi-variant correlation methods 
can evaluate multiple channel data. This feature is 
our requirement.

First, we set an equal-time correlation matrix.  
A measured multiple ROI time series signal is set 
to Si(t) (i = 1, …, N). The equal-time correlation ma-

trix CET is constructed as follows by normalizing  
the signal
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Here, σi is the standard deviation, and tS  is the 
mean. We then use the Pearson correlation coeffi-
cient to analyze the parameters. Lastly, we set CET 
as follows:
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Here, all calculations are based on time series  
t ∈ [1, T]. Therefore, the equal-time correlation ma-
trix can be rewritten as
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1
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Here, S¢  is the transposition of .S  The correlation in 
the structure of Si and Sj from various participants 
is included in the bivariate measures. This correla-
tion is further represented by N(N − 1)/2, and the 
independent coefficient matrix CETij, which can ex-
plain the cross-correlation between the data of spe-
cific participants and other participants. The calcu-
lation of this method can provide a direct interpre-
tation. The eigenvalues and characteristic matrices 
of matrix CET offer a joint probability distribution of 
the basic process in which the eigenvalues can demo- 
nstrate the level of similarity. For an infinitely long 
time series, if the signal of all ROI participants is 
unrelated, then the non-diagonal element of matrix 
CET will be equal to 0. By contrast, if the signals are 
completely correlated, then matrix CET will be equal 
to 1. Therefore, the level of the correlation between 
data depends on the size of the maximum eigenvalue 
of the CET. In our case, the Si (ROI) signal of all fi-
nitely long random time series is normalized. After 
normalization, the eigenvalue distribution of the cor-
relation matrix of Si can be written as follows [55]:
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Here, λ ∈ [λ+, λ−] and Q is equal to T/N. Therefore, 
λ− and λ+ can be obtained as follows:

	 ( ) 1 2
 1+ .Q

Q Q
λ± = ± 	 (5)

In the signal of all the participants, CET repre-
sents the correlation of each datum. We must only 
calculate the largest eigenvalue and compare it with 
λ+, which can estimate maximum random correla-
tions. If the maximum eigenvalue is larger than 
that of λ+, then the description has a certain simi-
larity and correlation. The correlation is inexistent  

Fig. 6. Possible ROI positions of face.
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in the signal data. Therefore, we set the signals of 
the different participants into the model to analyze 
whether a correlation exists. The obtained signal 
from the facial area is regarded as our ROI to achieve 
PS recognition without background data (baseline 
status).

We calculated the equal-time signals for 25 par-
ticipants (for training) through the multi-variant 
correlation method. Our target time interval after 
completing a movement is 95 s. The running-window 
method is used to divide the entire data recording 
into many adjacent segments. We set the time preci-
sion to average the signals as 0.5 s considering the 
time and time-interval variation precision of sig-
nal. The length of the running-window method is set  
to 13 s. Figure 7 shows the similarity of multi-
Subject signals at various parts of the face under 
physical stress (25 participants). Among the 25 
participants, all parts of their faces show multi-
subject similarity in feature to different degrees un-
der strong stimulation of physical stress. However, 
multi-subject similarity of face is the most obvious 
and continuous, and it is exactly the ROI signal we 
need. Therefore, we choose the left and right faces  
as our ROI.

3.3. Motion feature extraction
Face signal was selected on image as ROI. Changes in 
ROI region were tracked through Lucas-Kandae op-
tical flow. Lucas-Kandae optical flow is a two-frame 
differential optical flow estimation algorithm. The 
algorithm assumes that the brightness of the tracked 
object remains basically constant and the motion is 
slow relative to frame rate, which is reflected as con-
tinuous derivation in mathematics. The algorithm 
calculates the movement of two frames in each pix-
el point from time t to t + αt. It is Taylor series based 
on image signals. This method is called difference 
which uses partial derivatives for space and time 

coordinates. The image constraint equation can be 
written as

	 ( ) ( )I , , , , , , ,x y z t I x x y y z z t tδ δ δ δ= + + + + 	 (6)

where I(x, y, z, t) is voxel at (x, y, z, t). The movement 
is assumed to be small enough, and Taylor Formula is 
used for image constraint equation. We can get
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From this equation we can get
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where Vx, Vy, Vz are the optical flow vector of x, y, 
and z. ∂I/∂x, ∂I/∂y, ∂I/∂z,  and ∂I/∂t give the difference 
of image pixel at (x, y, z, t). Thereby

	 .x x y y z z tI V I V I V I+ + =- 	 (9)

The equation can be written as .T TI V IÑ =Ñ´


 
Assume that flow (Vx, Vy, Vz) is a constant in a small 
window with the size of m3(m > 1). The equation can 
be derived from the pixel group

	 A .V b


=- 	 (10)

In order to solve the over determination problem, 
the least square method is used to solve the optical 
flow equation, and the movement position of the opti-
cal flow is obtained, which is the coordinate informa-
tion of the region to be tracked in the next frame.

We chose three points randomly in the selected 
ROI and calculated the motion trajectories 1,S  2,S  3S  
of the three points by using the optical flow method
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where x and y are the positions of the points, a, b, 
and c are the three feature points. For example,  
(x1

a, y1
a) is the position of the first frame of the first 

feature point, and so forth. R is the number of 
frames, and there is a total of R frames. We select 
the central point of three points in the ROI region 
of the first frame as the fixed reference point S0. 
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Fig. 7. The normalized maximum eigen value of feature in 
each running window of the PS data. The test time is 95 
seconds, and the test areas are forehead, face, angulus oris 
and nose.
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Through these tracks, we can know the movement 
of the participant’s facial regions. According to the 
three feature points, the Euclidean distance between 
the three feature points and the fixed reference point 
was calculated, and three groups of feature sequen- 
ces D1, D2, and D3 were obtained. Finally, the ave- 
rage value of these three distance feature sequences 
is obtained as the final feature sequence D, which is 
time-continuous 

	 02,   1 2 3, , ,i i iD S S == - 	 (15)

	 3/ ,i
i

D D=å 	 (16)

where D is the signal output. The high frequency jit-
ter signal in PS state were extracted and conducted 
with classification training as features in the LSTM 
model.

4. EXPERIMENTAL RESULTS AND ANALYSIS
Firstly, the signals of 25 participants were trained as 
training features in the algorithm model. The fea-
ture signals were transformed from time domain 
to frequency domain for analysis. The feature se-
quences were conducted with Fourier transform, and 
the time domain is transformed into frequency do-
main. Figure 8 shows a typical feature case. Accord-

ing to the spectrum of baseline and motion state, it 
can be seen that there is no obvious peak in the fast  
Fourier transformation (FFT) diagram in the base-
line state, and the waveforms are all disorder and ir-
regular. However, there is an obvious peak value at 
1.5 Hz on the FFT diagram in moving state. In the 
meantime, we summarized the peak ranges of all 
participants (Fig. 9) and found that their muscle  
jitter high frequency ranges were higher than 1 Hz. 
The peak frequency of muscle movement varies from 
person to person in PS state. However, this shows 
that muscle motion feature D is sensitive to PS. 
Therefore, we put the facial muscle jitter signal D as 
the final feature signal of FMAD algorithm into the 
LSTM model to train our feature signal classifica-
tion model and realize the final baseline and PS clas-
sification detection model.

The extracted feature signal is sensitive to PS, 
which lays a foundation for classification. The fea-
ture signal is trained as input in the LSTM model. 
The training platforms are Python and tensorflow. 
The following figure shows that we built a classifi-
cation network based on LSTM through tensorflow. 
By taking the frequency information as input, eight 
LSTM cell units were set. The learning rate is 0.003, 
and batch size is 30. The output is classified into PS 
state and baseline state. The data of the remaining 
12 participants are taken as testing. The test was 
completed on tensorflow that can be visualized.  

Fig. 9. Peak frequency of feature signal motion.
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Fig. 8. Typical feature signal spectrum (using FFT). (a) 
Baseline spectrum, (b) PS spectrum.
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Accuracy of other famous algorithms

Algorithm Accuracy, %

Support Vector Machine 32

Competitive adaptive reweighted 
sampling

26

Bayes 41

k-Nearest Neighbor 19

Back Propagation 20

Ensemble Learning 28
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The classification accuracy of FMAD algorithm is up 
to 75%. By comparing with other famous classifiers 
(Table), the results show that our algorithm has obvi-
ous advantages and high accuracy.

5. DISCUSSION
This paper presented a physical stress recognition 
algorithm based on multispectral real-time imag-
ing technology. Our algorithm can classify physical 
stress state and baseline state of human body. As far 
as the authors know, this is the first time in the field 
to identify human physical stress through multi-
spectral imaging technology. Our algorithm extracts  
facial muscle motion parameters by multispectral 
imaging and classifies physical stress state and base-
line state of human body according to the changes of 
facial muscle motion state. Moreover, the algorithm 
can recognize physical stress without background 
data or baseline data as reference.

The movement of face muscle will change under 
stress. The algorithm foundation is constructed ac-
cording to this physiological feature. After obtain-
ing the real-time facial spectral signal by multispec-
tral imaging, we first used median filtering method 
for image denoising and smoothing. Afterwards, 
the face images were conducted with multi-scale 
LBP feature processing because we need the feature 
points of face as a reference. This can also effec-
tively suppress the effect of noise on images. In the 
meantime, multi-scale LBP features can describe lo-
cal and global features of images. After the feature 
points were obtained, we used multi-subject similar-
ity correlation method to systematically analyze the 
spectral signals of each part on face and determined 
cheek as our ROI. Our selection of ROI is more sys-
tematic than previous studies. In order to realize the 
contactless PS recognition without background data, 
we extracted the feature of muscle motion track at 

ROI by using optical flow method. The physical stress 
recognition without interference or background data 
is realized through LSTM algorithm model training 
classification.

Our future work is quite heavy because there are 
still many shortcomings and goals to be overcome 
or achieved. Firstly, the experiment range needs 
to be expanded, and the current number of partici-
pants in the experiment can be increased to obtain 
larger samples. Secondly, although the multispectral  
imaging realizes the acquisition of real-time data, 
the real-time tracking and extracting algorithm of 
ROI will be the key point in the next step. The recog-
nition rate of 75% for the application in the industry 
field is not good enough. The accuracy of recognition 
should be improved further in the next step. Thirdly, 
the data were collected in laboratory environment. 
The future work will focus on the expansion of exper-
imental environment, so that our research and devel-
opment algorithm can better combine with industrial 
application. In the meantime, further quantification 
of physical stress can quantify physical stress in a 
hierarchical manner, which is challenging. However, 
this will lay a foundation for the next industrial ap-
plication. For example, we plan to install the imag-
ing system in cabs to extract the PS information 
of drivers in real time, which can provide effective  
information for quantifying their fatigue degree.
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