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ФИЗИЧЕСКАЯ ОПТИКА

Введение

В процессах генерации электрон-дырочных 
пар (ЭДП), вызванной мощным оптическим 
излучением в объемных диэлектриках, широ-
козонных полупроводниках, а также в гетеро-
структурах, важную роль играют многофотон-
ные межзонные переходы (МФМП). Первые ра-
боты по МФМП в кристаллах были выполнены в 
начале 60-х годов вскоре после появления лазе-
ров. В первую очередь были исследованы двух-
фотонные переходы (ДФП) [1–5]. Роль МФМП 
в установлении предельной мощности лазеров 
была отмечена в работе [6]. Использование не-
линейного поглощения в полупроводниках для 
управления длительностью лазерного импульса 
и ограничения его интенсивности рассмотрено в 
работе [7].

Существует несколько подходов к вычисле-
нию вероятности n-фотонных переходов в твер-
дых телах. Первый из них основан на использо-
вании n-го порядка теории возмущений (ТВ) по 
полю электромагнитной волны и применялся 
для расчета скоростей ДФП, начиная с работ 
[2, 4], где использовалась трехзонная модель 
полупроводника. Затем с помощью ТВ рассчи-
тывались вероятности трех- и четырехфотонных 

переходов [8, 9]. Для модели двух изотропных 
параболических зон вероятность прямых трех-
фотонных переходов была получена в работе [10]. 
В работе [11] трехфотонные переходы рассчи-
тывались с учетом вырождения потолка валент-
ной зоны при k = 0 (k – волновой вектор элект-
рона или дырки) либо в модели невырожден-
ных, но  близко расположенных  валентных зон 
и анизотропных эффективных масс электронов 
и дырок. Расчеты вероятностей непрямых ДФП 
для полупроводников, у которых экстремумы 
валентной зоны и зоны проводимости находят-
ся в различных точках k-пространства, были 
выполнены в работах [12–14]. Многофотонные 
процессы при взаимодействии длинноволно-
вого оптического излучения с наноструктурами 
исследованы в работах [15–17].

Важную роль при вычислении вероятности 
МФМП играет выбор используемого в расчете 
вида взаимодействия электронной системы с 
полем световой волны. В зависимости от сделан-
ного выбора может либо увеличиваться, либо 
уменьшаться относительный вклад различных 
каналов рассматриваемого процесса высокого 
порядка. Обозначим через E и A напряженность 
электрического поля и вектор-потенциал элект-
ромагнитной волны, а через x, v, p – операторы 
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координаты, скорости и импульса, действующие 
в электронной подсистеме; e, m обозначают за-
ряд и массу свободного электрона, с – скорость 
света. Приближения, которые являются, к при-
меру, оправданными для случая взаимодействия 
в форме “eE ·x”, могут оказаться плохими для 
взаимодействия в форме “(e/mc)A ·p”. Игнори-
рование этого обстоятельства приводит к оши-
бочным результатам. Так в работе [18] межзон-
ная часть взаимодействия, выбранная в форме 
“(e/mc)A ·p”, учитывалась в первом порядке, а 
внутризонная часть – в n – 1 порядке. На самом 
же деле, отношение внутризонного матричного 
элемента электрон-фотонного взаимодействия к 
межзонному матричному элементу определяется 
параметром β ∝ [(nћω – Eg)/Eg]1/2, где Eg – ши-
рина запрещенной зоны, ω − частота оптического 
излучения. Малость параметра β означает, что 
внутризонное взаимодействие в данном случае 
нужно учитывать в нижайшем порядке (нулевом 
или первом в зависимости от четности n). В за-
дачах, где требуется вычислять внутризонные 
матричные элементы взаимодействия, форма 
“eE · x” неудобна из-за возникающих сингуляр-
ностей. В то же время при наличии в модельном 
гамильтониане задачи нелокальных потенциалов 
форма взаимодействия “(e/mc)A ·p” становится 
не вполне адекватной в силу того, что оператор 
скорости v перестает быть пропорциональным 
оператору импульса p. Детальный анализ спект-
ров ДФП для ряда объемных полупроводников 
с учетом поправок к оператору импульса, свя-
занных с нелокальностью псевдопотенциала, 
был выполнен в работе [19]. В работе [20], где 
рас сматривались “калибровочно-инвариантные” 
ДФП в квантовых ямах, в этой связи использова-
лось взаимодействие в так называемой скорост-
ной калибровке. Сравнение вероятностей ДФП в 
квантовых ямах структур на основе GaAs, вычис-
ленных в работе [20] с использованием скорост-
ной калибровки и “(e/mc)A · p”-взаимодействия, 
показывает, что имеющиеся различия носят ско-
рее количественный, чем качественный харак-
тер. Использование же взаимодействия в ско-
ростной калибровке для расчетов вероятностей 
n-фотонных переходов при n > 3 приведет даже 
в случае простых моделей электронного энерге-
тического спектра квантовой ямы к исключи-
тельно сложным выражениям.

Критерием применимости стандартной ТВ 
является малость отношения энергии взаимодей-
ствия электронной системы со светом к энергии 
кванта света �ω. Практически это условие почти 
всегда выполняется при интенсивностях света 

j <~ 1 ГВт/см2, если в системе не возникает одно-
фотонного резонанса и энергия кванта света не 
слишком мала ћω >~ 10–1 эВ. Специфика МФМП 
в субмиллиметровом диапазоне, когда критерий 
применимости ТВ нарушается, исследована в 
работе [21].

При непосредственном применении стан-
дартной ТВ к расчету вероятностей n-фотонных 
переходов возникает проблема учета быстро 
возрастающего с увеличением n числа проме -
жуточных виртуальных состояний. Получаю-
щиеся формулы становятся неудобными для 
численных оценок. В то же время, в некоторых 
случаях использование особенностей зонной 
структуры материала позволяет, не выходя за 
рамки ТВ, получить приемлемые выражения 
для вероятностей n-фотонных переходов при 
произвольных n. Примером может служить рас-
чет вероятностей МФМП в полупроводниках со 
сложной структурой потолка валентной зоны 
при циркулярной поляризации света [22], а 
также работа [23], в которой для произвольных 
n в рамках ТВ получены простые формулы для 
вероятностей n-фотонной генерации ЭДП в по-
лупроводниковых материалах с квантовыми 
ямами.

Проблемы, связанные с необходимостью учета 
большого числа каналов процесса высокого по-
рядка по полю, в значительной мере устраня-
ются в рамках подхода [24], где взаимодействие 
электронной системы со светом включено в вол-
новые функции начального и конечного состоя-
ний, и вероятность n-фотонного перехода по-
лучается в первом порядке по межзонной части 
взаимодействия. Из-за неточ ности в расчетах 
в этой работе было получено, что частотная за-
висимость вероятностей n-фотонных переходов 
как при четных, так и при нечетных n, такая 
же, как у разрешенных однофотонных пере-
ходов, что противоречит результатам расчетов 
по стандартной ТВ. На эту неточность было 
указано в работе [25], где описанный выше под-
ход [24] сформулирован в духе адиабатической 
ТВ. Однако в формулах работы [25] перепутаны 
четные и нечетные числа фотонов. Эта ошибка 
была исправлена в работе [26]. Подход [24–26] 
не сводится к двухзонному приближению: зоны, 
не совпадающие с теми, между которыми идет 
переход, неявно учитываются в предположении, 
что расстояние до них велико по сравнению с ћω. 
Попытки в явном виде учесть в рамках такого 
подхода  многозонный спектр  системы (см. на-
пример, [27])  приводили к формулам, громозд-
кость которых затрудняет их использование.
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В работе [28] с помощью метода типа [24, 25] 
была рассчитана многофотонная генерация ЭДП 
и экситонов в сверхрешетке, потенциал которой 
моделировался периодической цепочкой δ-об-
разных слабопроницаемых барьеров. В расчете 
не учитывалось смешивание светом различных 
минизон, принадлежащих валентной зоне и зоне 
проводимости. В результате были получены до-
статочно простые формулы для коэффициентов 
n-фотонного межзонного поглощения, которые 
оказались пропорциональными (n – 1)-й степе-
ни малого отношения ширины минизоны к ћω.

В работе [29] с помощью метода типа [24, 25] 
исследовался нелинейный эффект Франца–Кел-
дыша. Было получено аналитическое выраже-
ние для n-фотонного межзонного коэффициента 
поглощения в прямозонном полупроводнике в 
присутствии постоянного электрического поля. 
Полученное выражение для случая n = 2 приме-
нялось для описания процесса туннелирования 
с участием ДФП.

Промежуточный между ТВ и подходом [24, 
25] способ расчета вероятностей МФМП пред-
ложен в работе [30] и развит в [21]. Этот способ, 
основанный на диагонализации гамильтониана 
электронной системы в поле электромагнитной 
волны, позволяет включить взаимодействие 
электронной системы с полем в нулевое прибли-
жение и вычислять вероятности n-фотонных пере-
ходов в первом порядке по недиагональной части 
преобразованного гамильтониана. При n = 2, 3 
формулы для вероятностей переходов получаются 
такими же, как в ТВ. При больших n асимптотика 
близка к получаемой в методе [24, 25].

В настоящее время остается недостаточно 
исследованным  вопрос  о  влиянии примесей с 
дискретными уровнями в глубине запрещенной 
зоны на многофотонную генерацию ЭДП. Оче-
видно, что примесные состояния могут играть 
роль как промежуточных виртуальных состоя-
ний в процессе высокого порядка по полю, так и 
реальных промежуточных состояний в каскад-
ной схеме генерации ЭДП. Именно такая схема и 
рассматривается в этой и последующих статьях. 
В данной статье в рамках ТВ рассматриваются 
ДФП типа “примесь–зона” и “зона–примесь”, 
причем примесные состояния описываются в 
рамках модели потенциала нулевого радиуса.

Модель кристалла и волновые функции 

Рассмотрим диэлектрик или полупроводник 
с большой шириной Eg запрещенной зоны, об-
лучаемый интенсивным светом с частотой ω. 

Пусть в кристалле имеется некоторое количе-
ство одноуровневых центров (ОЦ) (рис. 1) либо 
двухуровневых (ДЦ) (рис. 2) глубоких примес-
ных центров. Для определенности предположим, 
что энергетические зазоры как между уровнем 
примеси (нижним в случае ДЦ) и потолком ва-
лентной зоны ν, так и между уровнем примеси 
(верхним в случае ДЦ) и дном зоны проводимости 
c больше энергии ћω одного фотона, но меньше 
энергии 2ћω двух фотонов (см. рис. 1, 2).

Для оценки вероятностей оптических пере-
ходов между электронными состояниями не-
прерывного спектра (в валентной зоне или зоне 
проводимости)  и дискретными состояниями 
глубокой  примеси  в  области  энергий  запре-
щенной зоны воспользуемся известной моделью 

с
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2

Рис. 1. Модель кристалла с одноуровневыми 
примесными центрами.

Рис. 2. Модель кристалла с двухуровневыми 
примесными центрами. 

c

ν

Eg

1

2

1

1

2

2



6 “Оптический журнал”, 77, 10, 2010

потенциала нулевого радиуса [31, 32]. Волновая 
функция примесного электрона определяется из 
уравнения Шредингера

2
2

2
( ) ( ) ,U V E

m λ λ λ λ λψ ψ ψ ψ− ∇ + + =r r
 
       (1)

где U(r) − эффективный периодический потен-
циал решетки, λ — совокупность квантовых 
чисел, характеризующих состояние электрона, 
V(r) – потенциальная энергия электрона в поле 
примесного центра. Считая, что характерная 
длина волны свободного носителя заряда велика 
по сравнению с постоянной решетки, а также 
по сравнению с радиусом примеси, можем по-
ложить

0( ) ( ).V V δ=−r r
  

                            (2)

При этом собственные значения энергии примес-
ного электрона Eλ находятся из соотношения
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где ψkl(r) – блоховская  волновая  функция  l-й 
зоны, Ekl – соответствующая блоховская энер-
гия. Как показано в работе [32], волновую функ-
цию примесного электрона ψλ можно предста-
вить в следующем виде:

0
.
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( ) ,l l
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N

E Eλ λ
λ

ψ ψ
ψ

∗

= ∑
−
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r
r                   (4)

где Nλ – нормировочная константа. Индекс λ при-
нимает значения λ1, λ2 в случае ДЦ и λ1 в случае 
ОЦ. Функции ψkl будем нормировать на едини-
цу в объеме Ω. Энергию будем отсчитывать от 
дна зоны проводимости c. У краев зон восполь-
зуемся простейшей аппроксимацией, полагая 
для блоховских энергий зоны проводимости и 
валентной зоны, что

Ekc = (ћk)2/(2mс), Ekν = −Eg − (ћk)2/(2mν),    (5)

где mс и mν – эффективные массы электронов 
и дырок.  При нашем выборе отсчета энергии 
Eλ < 0. Заменим ψ*

kl(0) константой Ω−1/2. Из всей 
суммы по l сохраним два члена, отвечающие 
зоне проводимости l = c и валентной зоне l = ν. 
Тогда для волновой функции получим
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Из условия нормировки имеем
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Вероятности двухфотонных переходов 
“зона–примесь” и “примесь–зона”

Вероятность ДФП между валентной зоной ν и 
примесным уровнем с энергией 
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где 
1

1 2( , )
,M

νν λk  − составной матричный элемент про-
цесса второго порядка. Верхние индексы (1) или 
(2) относятся к случаям ДФП для ОЦ и ДЦ соот-
ветственно. 

Феймановские диаграммы, соответствующие 
различным каналам процесса второго порядка, 
приведены на рис. 3. В случае ОЦ вклад дает 
только левая диаграмма, а в случае ДЦ – обе диа-
граммы. Для составных матричных элементов 
перехода имеем
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,

,

V V
M

V V
M M

νν νλ

νλ λ λ

ω

ω

=

= −
 

                   (9)

где Vij – матричные элементы оператора взаимо-
действия электронной системы с полем электро-
магнитной волны .e ph

e
H

mc− = ⋅A p  Имеем

( ) ( ) , ,cc c
c

e e
V V

m c m cνν ν
ν

=− =⋅ ⋅A k A k
 
       (10)

ν

νν

1

121

1
2

2

Рис. 3. Фейнмановские диаграммы для матрич-
ного элемента двухфотонного перехода ν → λ1. 
Прямые линии со стрелками, направленными 
слева направо – электроны, прямые линии со 
стрелками, направленными справа налево – 
дырки, волнистые линии – фотоны.
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Полученные выражения подставим в форму-
лу (8) и, выполнив интегрирование по углу между 
векторами A и kν, снимем с помощью δ-функции 

интегрирование по kν. В итоге для вероятности 
двухфотонного перехода “валентная зона – при-
месь” имеем

( )
1 2

1 2

1 2 1 2

1 2 2 2 2 2

2 2

,

,

, ,

/ ,cv

g
c

m
eN

m
V

mc k k
E E E

m m

νλ ν
νλ

ν ν
λ λ

ν

Ω

⎛ ⎞⎟⎜ ⎟⎜ ⋅ ⎟⎜ ⎟⋅⎜ ⎟⎜ ⎟= −⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ + − − + ⎟⎜ ⎟⎟⎜⎝ ⎠

A k
A p

( ) ( )
1 2

2 1

1 2 2 1

3

 1 1
2

( )
.c c

g c g c

em m N N
V

cm m E E E m m E E E m

ν ν λ λ
λ λ

ν λ λ ν λ λπ

⎛ ⎞⎟⎜⋅ ⎟⎜ ⎟⎜=− + ⎟⎜ ⎟⎜ ⎟− − − −⎜ ⎟⎟⎜⎝ ⎠

A p
(12)

(11)

(14)

(15)

( )

( )
( )
( )

1 2 2
1 1

2

2

2
12

2

4 2 2 2 2 2 2 2 2
2 1

4 4 3 2 11 22 2

5 2 3 2 22 2 2
2 2

2 2 22 2

5 2 3 2

12

24 2

2 2 24

22 2

2 2 2

( ) ( )

/

/

( ) c v cv c c

c

g

cg

g

Ae k m m N N p m m N p
W W

c m E m k

E m E m kk m
m N

E m kE m E m k

E m E m

ν λ λ ν λ ν
νλ νλ

λ ν

ν λ ν νν
ν λ

λ νν λ ν ν

ν λ ν

β β

π ω

π
β

π

⎧⎪⎪⎪⎪= + +⎨⎪⎪ +⎪⎪⎩
⎡ − +⎢
⎢+ − +
⎢ +− + ⎢⎣

− +
+

( )
( )( )2 1

22

2 2 2 22 2 2
,

c g

k

E m k E m E m k

ν

λ ν ν λ ν ν

⎫⎤⎪⎪⎥⎪⎪⎥⎬⎥⎪+ − + ⎪⎥⎪⎥⎦⎪⎭

(13)
( )1

4 2 2 2 2
1

4 2 3 2 22 2 2

4 5 3
15 2 2 2

( ) ( ) ( ) ( )
,

( )

c c

c g

Ae k N m p k
W

c m m k E m E m E m k

ν λ ν ν
νλ

ν ν λ λ ν ν ν
π ω

⎧ ⎫⎪ ⎪⎪ ⎪= +⎪ ⎪⎨ ⎬⎡ ⎤ ⎡ ⎤⎪ ⎪+ − + +⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

где 

( )

( ) ( )

1

1 2 1 1

2 2
28

2

1 1

, ,

.

g

g c g c

mcj
A k E E

m E E E m m E E E m

ν
ν λ

ν λ λ ν λ λ

π
ω

ε ω

β

∞

= = − +

= +
− − − −

j – интенсивность света, ε∞  – высокочастотная 
диэлектрическая проницаемость. 

Аналогичным образом вычисляется вероят-
ность двухфотонного перехода “примесь–зона 
проводимости”

(16)
( )1 1

4 2 2 2 2
1

4 2 3 2 22 2 2

4 5 3
15 2 2 2

( ) ( ) ( ) ( )
,

( )

c cv c
c

c g c c

Ae k N m p k
W

c m m E m E m k k E m

λ ν
λ

ν λ ν ν λ
π ω

⎧ ⎫⎪ ⎪⎪ ⎪= +⎪ ⎪⎨ ⎬⎡ ⎤ ⎡ ⎤⎪ ⎪− + +⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭



8 “Оптический журнал”, 77, 10, 2010

Обсуждение результатов

Формулы (13, 14) и (16, 17) могут быть пред-
ставлены в виде 

1 1

2 2

1 1

2 2
2

1 1

2 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

.
c c

c c

W

W
j

W

W

νλ νλ

νλ νλ

λ λ

λ λ

η

η

η

η

⎫ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪=⎬ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎭ ⎭
 

                      (18)

Для частот излучения, лежащих в длинновол-
новой области видимого спектра или в ближнем 
ИК диапазоне, и при типичных значениях пара-
метров зонной структуры значения коэффици-
ентов в правой части (18) составляют 

1 1( ) ( ), cνλ λη η ≈ 103–104 см4 МВт−2 с−1, 

1 2

2 2( ) ( ), cνλ λη η ≈ 106–107 см4 МВт−2 с−1. 

Видно, что в случае двухуровневых примесных 
центров вероятности ДФП “зона–примесь”  и 
“примесь–зона” оказываются существенно (на 
2–3 порядка) выше, чем в случае одноуровневых 
центров.  Это  происходит благодаря  наличию 
в случае ДЦ дополнительного “внутрицентро-
вого” канала процесса второго порядка. Столь 
высокие значения вероятностей рассмотренных 
переходов указывают на высокую “конкуренто-
способность” каскадных механизмов генерации 
неравновесных ЭДП с участием примесных уров-
ней в запрещенной зоне.

Полученные результаты для вероятностей 
ДФП “примесь–зона” и “зона–примесь” будут 
использованы в следующих частях работы для 
анализа кинетики  генерации  неравновесных 
ЭДП излучением с энергией кванта, в 4–5 раз 
меньшей ширины запрещенной зоны кристалла. 
В рамках предложенной модели глубокой приме-
си с использованием метода потенциала нулевого 
радиуса будут также исследованы более сложные 
(и, при определенных условиях, более эффектив-
ные) двухэлектронные механизмы генерации 
ЭДП (в т.ч. механизм “оптического трамплина” 
[33]) и будут определены условия, при которых 
примесные механизмы многофотонной генера-
ции ЭДП играют превалирующую роль.

Работа выполнена при поддержке Рособразо-
вания, гранты 2.1.1/2166, 2.1.1.2532, и РФФИ, 
грант 09-02-00223а.
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