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Началом эры современных световых микро-
скопов следует считать 50–60-e годы ХХ сто-
летия. Именно в это время наблюдается рост 
научно-технического и технологического по-
тенциала в области микроскопостроения прак-
тически по всему миру, особенно в Германии 
(Carl Zeiss, Jena; Opton; Leitz), Швейцарии 
(Wild), Австрии (Reichert), Японии (Olympus, 
Nikon), США (Bash&Lomb, AO), СССР (ЛОМО), 
Польше (PZO). Тенденции развития микроско-
пии этого времени связаны с разработкой мето-
дик расчета оптических элементов микроскопа 
[1], конструированием и освоением технологий: 
от воспроизведения микроскопов, созданных 
до войны, до создания новых конструкций с ис-
пользованием технологий военного производ-
ства [2].

В связи с бурным развитием науки и техни-
ки к концу 60-х – середине 70-х годов произо-
шел скачок в области микроскопии, связан-
ный с развитием сложных наукоемких систем 
[3]. Прежде всего, это коснулось микроскопов, 
обеспечивающих наблюдение в расширенном 
спектральном диапазоне. Причиной повышен-
ного внимания стала не только необходимость 
наблюдения в ультрафиолетовой области (для 
биологии) и инфракрасной области (для матери-

аловедения и микроэлектроники) спектра, но и 
возможность увеличения разрешающей способ-
ности микроскопов. Новые технологии повлия-
ли на усиленное внимание к люми несцентной и 
поляризационной микроскопии. Тогда же по-
явились первые разработки экранных и дистан-
ционных микроскопов. 

Необходимость в фиксировании протекаю-
щих во времени процессов как в биологии, 
так и в материаловедении повлияла на созда-
ние систем, обеспечивающих документирова-
ние не только на фото-, но и на кинопленку со 
встроенными или вынесенными фото-, кино-
аппаратами. В это же время ведущие фирмы-
разработчики вели работы по: 

унификации длины тубуса, высоты объек- –
тивов и окуляров; 

созданию методик выравнивания положе- –
ния выходных зрачков объективов, перераспре-
делению хроматических аберраций между объ-
ективом и окуляром для достижения компенса-
ционного эффекта;

выравниванию  хроматической разности  –
увеличения (ХРУ) для всего комплекта объек-
тивов [4].

В 80-е годы произошел подъем научно-тех-
нических разработок. Появилось большое ко-
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личество американских, немецких и японских 
патентов, посвященных оптическим схемам 
объективов и окуляров микроскопа, биноку-
лярным насадкам, конденсорам и осветитель-
ным системам на базе не только стандартных 
стекол, но и с применением новых оптических 
сред [5]. Анализ патентного материала тех лет 
показал, что наметились тенденции, связанные 
с повышением таких параметров объективов, 
как увеличение (150–200× для проходящего и 
отраженного света); числовые апертуры (для 
проходящего света); рабочие расстояния (для 
различных толщин предметных и покровных 
стекол для нестандартной посуды и фотоша-
блонов). Аберрационные расчеты указывали на 
стремление разработчиков к созданию планоп-
тики с минимумом хроматических аберраций 
на линейных полях до 25–30 мм. Практически 
все оптические схемы объективов рассчитыва-
лись на длину тубуса “бесконечность” с тубус-
ными системами, имеющими фокусные рассто-
яния 164–250 мм. 

Ряд запатентованных расчетов и оптических 
систем окуляров имели упрощенные схемы с 
асферическими поверхностями, вынесенными 
зрачками, без хроматической разности увели-
чения и с большими линейными и угловыми 
полями. Тщательный подход к аберрационному 
расчету осветительных систем с использовани-
ем асферических поверхностей в оптических 
схемах конденсоров указывал на подготовку к 
переходу на новый уровень развития световой 
микроскопии в целом.

Одним из первых новых разработок стал ряд 
микроскопов предприятия Карл Цейсс, Йена 
(ГДР) с оптикой “Jena-250”, рассчитанной на 
“бесконечность” и тубусной системой с фокус-
ным расстоянием 250 мм, позволившей обеспе-
чить наблюдение на максимальном линейном 
поле 32 мм без хроматических аберраций. Уве-
личенное линейное поле было слишком боль-
шим для наблюдения глазом, а для систем до-
кументирования оно было явно избыточным. 
Кроме того, конструкции микроскопов были 
достаточно материалоемкими, но качество изо-
бражения отличалось высоким контрастом и 
разрешением по сравнению со старыми прибо-
рами. Практически в это же время фирма Opton 
(ФРГ) разработала микроскопы серии “Axio”. 
За счет применения ICS1-оптики (рис. 1), рас-
считанной на “бесконечность” с тубусной систе-

1 ICS – оптика (Infinity Color Corrected Optical 
System) – оптическая система, рассчитанная на “бес-
конечность” и скорректированная по цвету. 

мой фокусного расстояния 160 мм, эти микро-
скопы были малогабаритными, а за счет кон-
струкции типа “пирамида”  имели надежную 
устойчивость. Максимальное линейное поле без 
хроматической разности увеличения составля-
ло 23–25 мм и было оптимально для наблюде-
ния глазами. Наряду с этим велись работы по 
люминесцентной микроскопии, что создавало 
базу для проведения исследований в клеточ-
ной микробиологии.

В это же время немецкая фирма Leitz (ФРГ) 
разрабатывала микроскопы для развивающего-
ся направления – микроэлектроники, требую-
щей высокоточного оборудования для оснаще-
ния технологических процессов производства 
фотошаблонов и печатных плат. Для этой груп-
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Рис. 1. Эволюция оптических систем микроско-
пов. Корректировка хроматических аберраций 
систем, рассчитанных на “бесконечность” (на 
примере разработок фирмы Carl Zeiss). 
Схема А. Микроскоп типа Axiomat: 1 – пло-
скость предмета; 2 – объектив, ХРУ = +1,2%; 
3 – “корректор”, ХРУ = –1,2%; 4 – тубусная 
линза; 5 – главная промежуточная плоскость, 
ХРУ = 0%; 6 – окуляр, ХРУ = 0%; 7 – “бесконеч-
ность”, параллельный пучок лучей.
Схема Б. ICS-оптика: 1 – плоскость предмета; 
2 – объектив, ХРУ = +1,1% до +1,9%; 3 – тубус-
ная линза, ХРУ = –1,1% до – 1,9%; 4 – система, 
обеспечивающая ХРУ = 0%; 5 – главная про-
межуточная плоскость, ХРУ = 0%; 6 – окуляр, 
ХРУ = 0%; 7 – “бесконечность”, параллельный 
пучок лучей; 8 – цветовая коррекция. 
ХРУ – хроматическая разность увеличения.
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пы микроскопов было необходимо наличие та-
кого качества изображения, которое позволило 
бы на дифракционном уровне [6] получать раз-
решение субмикронных структур с высоким 
контрастом и цветопередачей. При этом требо-
валось обеспечить проведение измерений в ав-
томатическом режиме с помощью регистрирую-
щих систем.

Развитие направления “Стереоскопические 
микроскопы по схеме Аббе” определяли раз-
работки фирм Wild (Швейцария) и Bash&Lomb 
(США), стереомикроскопы по схеме Грену. Кро-
ме того, фирма Wild выпускала макроскопы 
для микроэлектроники. Обе фирмы предлагали 
на мировой рынок большой парк оборудования 
всех классов сложности с панкратическими 
системами, обеспечивающими плавную смену 
дополнительного увеличения с различными ко-
эффициентами передачи, с разнообразными ис-
точниками света, предметными столами, стой-
ками и принадлежностями.

Политические и экономические события 
90-х годов привели к перераспределению про-
изводственных сил в мире. Прежде всего, это 
коснулось немецких фирм. Образовалось два 
сильных концерна: Carl Zeiss, объединивший 
восточное и западное производства (Carl Zeiss, 
Jena и Opton) [7], и Leica, поглотивший ряд про-
изводств, в том числе Wild, Reichert (Австрия), 
Bash&Lomb. Это привело к еще большему укре-
плению позиций немецких концернов в области 
научной микроскопии. С целью высвобождения 
промышленных площадей для внедрения но-
вых технологий, часть технологического обо-
рудования ведущих фирм Германии и Японии 
была продана в другие страны и, прежде всего, 
в Китай. Около 8 заводов в Китае производят 
микроскопы и узлы микроскопов, обеспечивая 
мир приборами невысокого и среднего уровня 
качества, заполняя нишу эконом-класса.

В это же время стали появляться небольшие 
фирмы с достаточно интересными разработками 
и постепенно налаживаемым производством: 

Micros –  (Австрия) – основное внимание 
фирма уделяет прямым биологическим мик-
роскопам. В настоящее время выпускаются 
модели люминесцентных и инвертированных 
микроскопов проходящего света, а также сте-
реоскопические микроскопы с панкратиче-
скими системами. Есть модель с экранной на-
садкой, встроенной цифровой камерой и мини-
компьютером, имеющим простую программу 
обработки изображения и выполнения измере-
ний (рис. 2) [8];

Meiji Techno –  (Япония) – продукция фир-
мы включает микроскопы проходящего и отра-
женного света, инвертированные, стереоскопи-
ческие, поляризационные и люминесцентные 
(рис. 3); 

Motic –  (Китай) – основной упор в разработ-
ках этой фирмы делается на микроскопы со 
встроенными цифровыми камерами. Это ряд 
прямых биологических (рис. 4) и стереоскопиче-
ских микроскопов. Камеры имеют разрешение 
3 мегапиксела и комплектуются простой про-
граммой для обработки изображения и выпол-
нения измерений. Продукция фирмы включает 
люминесцентные, инвертированные, биологиче-
ские и стереоскопические микроскопы [9, 10].

В настоящее время уровень выпускаемых 
микроскопов этих фирм с разной полнотой обе-
спечивается учебными и упрощенными моделя-
ми, а также рабочими и простыми лабораторны-
ми моделями. В полных каталогах этих фирм 
появляются и микроскопы, бывшие в продажах 
80–90-х годов прошлого века американского 
производства.

Необходимость сокращения затрат на про-
изводство, с одной стороны, и создание но-
вых рабочих мест в развивающихся странах, 
с другой стороны, привели в начале XXI века 
к перераспределению процесса производства 
микроскопов из стран разработчиков Запада в 
страны-производители Востока и, прежде все-
го, в Китай и Таиланд. Под технологическим 
контролем специалистов фирм Carl Zeiss, Leica, 
Olympus, Nikon в Китае в настоящее время на-
лажен выпуск микроскопов рабочего и лабора-
торного класса сложности [11].

Таким образом, к началу XXI века рынок 
световых микроскопов формируется в основном 
продукцией фирм Германии, Японии, Австрии 
и Китая.

В табл. 1 представлены основные тенденции 
формирования современных моделей световых 
микроскопов по классам сложности с учетом 
групп и типов приборов. Рассуждая о современ-
ных оптических системах микроскопов, отме-
тим следующее.

1. В конце ХХ века речь шла об оптических 
системах, рассчитанных с условием исправле-
ния хроматических аберраций от плоскости 
предмета до главной промежуточной плоскости 
(плоскости изображения). Исправление хрома-
тических аберраций – одна из основных воз-
можностей улучшить качество изображения за 
счет уменьшения влияния сферохроматических 
аберраций на точность настройки (фокусиров-
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Рис. 2. Биологический микроскоп с 
экранной насадкой, встроенной циф-
ровой камерой и мини-компьютером 
(Crocus II MCX100LCD, Micros, 
Австрия).

Рис. 3. Люминесцентный ми-
кроскоп (МТ6000, Meiji Techno, 
Япония).

Рис. 4. Биологический 
микроскоп со встроенной 
цифровой камерой (DM 
ВА300, Motic, Китай).

Рис. 5. Блок-конструктор многофункционального модульного микроскопа (AxioScope A, Carl Zeiss, Германия): 
1 – визуальная насадка; 2 – промежуточный тубус с пазом для крепления модуля анализатора; 3 – модуль 
крепления светоделительных блоков; 4 – верхний модуль осветительной системы отраженного света; 5 – 
промежуточная пластина для увеличения свободного расстояния для высоких объектов (камер); 6 – штатив; 
7 – предметный столик; 8 – узел крепления конденсора; 9 – револьверное устройство крепления светофиль-
тров, встроенное в систему осветителя проходящего света; 10 – револьверное крепление объективов; 11 – паз 
для установки ДИК-призм; 12 – объектив; 13 – слайдер для крепления поляризатора в отраженном свете; 
14 – съемный блок апертурной регулируемой диафрагмы отраженного света; 15 – съемный блок полевой 
регулируемой диафрагмы отраженного света; 16 – слайдер для крепления светофильтров; 17 – адаптер для 
крепления узла источников отраженного света; 18 – блок крепления светофильтров проходящего света.



Рис. 6. Микроскоп с диодным 
осветителем (DM 750, Leica, 
Германия). Рис. 7. Моторизованный ми-

кроскоп (Axio Imager Z, Carl 
Zeiss, Германия).

Рис. 9. Виртуальный микро-
скоп (MIRAX-SCAN, Carl Zeiss, 
Германия).

Рис. 10. Управление мотори-
зованной системой микроско-
па с помощью ЖК-экрана, 
закрепленного на штативе 
(Carl Zeiss, Германия).

Рис. 11. Блоки управления моторизованной системой стереоскопиче-
ского микроскопа серии StereoDiscovery/Lumar (Carl Zeiss, Германия): 
а  – внешний вид стереомикроскопа; б  – блок управления ��������� HIP������  фоку-
сировкой или плавной сменой увеличения; в – блок управления всей 
системы микроскопа SyCОР; г – информация, отображаемая на дисплее 
SyCОР.

Рис. 13. Система ApoTome: а  – микроскоп с системой ApoTome; 
б  – схема работы устройства ApoTome; в  – принцип получения 
оптических срезов.

(а) (б)

(в)

Рис. 12. Клетки, снятые с использо-
ванием разных контрастов: а – фазо-
вый контраст; б – дифференциаль- 
но-интерференционный  контраст 
(DIC).

(а)

(б)

(б)

(г)

(а) (в)
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ки) в плоскости наилучшей установки; увели-
чение разрешающей способности за счет повы-
шения контраста и т. д.

Развитие микроэлектроники и повышенные 
требования к контрасту и разрешению в субми-
кронных диапазонах, а также развитие медици-
ны (цитологические исследования в онкологии) 
и биологии (люминесцентная микроскопия при-
жизненных исследований), связанные с требо-
ваниями к оценке цветовых оттенков в изобра-
жении и свечении, все это в сочетании с необ-
ходимостью использования аналого-цифровых 
систем документирования потребовали перехо-
да на оптику нового поколения. Таковыми ста-
ли оптические системы типа ICS-оптика Zeiss, 
UIS-оптика Olympus. 

В настоящее время речь идет об оптической 
системе микроскопа, полностью скорректи-
рованной по хроматическим аберрациям – от 
источника света до плоскости изображения 
(IC2S – оптика Zeiss, USI2 – оптика Olympus, 
CFI60 – оптика Nikon и т. д.). При этом отмеча-
ется, что осветительная система имеет апохро-
матическую коррекцию, как в системе проходя-
щего света, так и в системе отраженного света, 
в том числе и для люминесценции. 

В это же время “второй эшелон” фирм от си-
стем с конечной длиной тубуса (160 мм) переш-
ли к микроскопам с оптическими системами, 
рассчитанными на длину тубуса “бесконеч-
ность” и с соответствующей одноступенчатой 
цветовой коррекцией, например, ICO-оптика 
Micros, CCIS-оптика Motic, ICOS-оптика Meiji. 
Конечная длина тубуса осталась у самых про-
стых и дешевых микроскопов для колледжей 
и рутинных работ в биологии, а также как то-
вар широкого потребления, которым может 
 воспользоваться каждый.

2. Современные конструкции микроскопов 
имеют высокий уровень модульности. Напри-
мер, микроскоп Axio Scope A1 (рис. 5) имеет 
23 конфигурации за счет разнообразного соче-
тания модулей. 

С другой стороны, в простых моделях отме-
чается использование “литых” конструкций, 
как например, в микроскопах серии DM 500, 
750 Leica (рис. 6), Primostar Carl Zeiss.

Однако какой бы модульностью не обладала 
конструкция микроскопа, важнейшими пока-
зателями являются его устойчивость и способ-
ность к сохранению настроек в течение дли-
тельного времени. 

В настоящее время ряд моторизованных 
микроскопов ведущих фирм в автоматическом 

режиме осуществляют поддержку не толь-
ко парфокальности (сохранение резкости при 
переходе от одного объектива к другому), но 
и парцентрировки (сохранение точки центра 
поля при переходе от одного объектива к дру-
гому). Современные штативы моторизованных 
универсальных микроскопов обеспечивают со-
хранение резкости изображения при длитель-
ном сканировании большого объема препара-
тов. При этом точность перефокусировки может 
осуществляться с шагом 10 нм, в том числе и 
при использовании предметных столов весом до 
9 кг (рис. 7).

3. Современные группы микроскопов, за счет 
разделения их с учетом применяемых техноло-
гий визуализации изображений, представлены 
группами, показанными на схеме (рис. 8). Осо-
бенности групп приведены в табл. 2.

Появление новых групп микроскопов свя-
зано с развитием цифровой техники и ком-
пьютерной обработки изображения, а также с 
разработкой новых технологий исследований, 
применяющих лазерные системы [12–14]. Это 
позволяет повысить информативность и разре-
шающую способность светового микроскопа. 

Новые группы приборов привели к реше-
нию одной из задач рациональной организации 
технологического процесса рутинных исследо-
ваний. Создание “виртуальных” микроскопов 
позволило уменьшить количество лаборантов, 
занятых в рутинной работе по просмотру боль-
шого количества препаратов. В процессе рабо-
ты создается банк просканированных и оциф-
рованных изображений препаратов, которые в 
любой момент времени могут быть “вынуты”, 
цифровым способом увеличены или уменьше-
ны, продемонстрированы во время обучения, 
заново проанализированы, сравнены с другими 
препаратами или отправлены по Интернету для 
консультации или обучения. Сложность реали-
зации этого процесса состоит в получении рез-
кого изображения при поступлении препарата 
из загрузочной камеры в плоскость сканиро-
вания и поддержание резкого изображения за 
все время сканирования. Следует отметить, что 
режим сканирования и документирования про-
исходит в закрытом сканере (рис. 9) с помощью 
объектива конкретного увеличения (20, 40 или 
100×). Подобные сканеры предлагаются такими 
фирмами как Carl Zeiss, Leica, Nikon. 

Аналогичная задача может быть решена с 
помощью “цифровых” микроскопов. В рассмат-
риваемой системе базой является стандартный 
световой микроскоп, который вместо визуаль-
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ной насадки имеет встроенную цифровую ка-
меру и удаленный компьютер или встроенные 
камеру и мини-компьютер, которые позволяют 
оцифровывать изображение и передавать его на 
экран встроенного или удаленного монитора. 
При наличии сканирующего стола эта система 
играет роль визуального (не виртуального) ска-
нера. Она имеет как преимущества – комплект 
объективов выбирается исследователем, так и 
недостатки – обязательное присутствие опера-
тора. Понятие “цифровая микроскопия” может 
быть применено и к системам телемедицины. 
С помощью телекоммуникационных техноло-
гий и специальных компьютерных программ 
консультант на удаленном доступе управляет 
моторизованной системой микроскопа со ска-
нирующим столом. 

Иногда понятие “цифровые микроскопы” 
употребляется не совсем корректно. Это в том 
случае, если речь идет либо об автоматическом 
управлении базовой модели микроскопа, либо о 
микроскопе со встроенной цифровой камерой, 
работающей совместно с визуальной насадкой. 

Современные универсально-исследователь-
ские микроскопы имеют автоматический или 

полуавтоматический режимы управления. 
Встроенные жидкокристаллические экраны 
(рис. 10) обеспечивают автоматическое управ-
ление микроскопом: установку в ход лучей объ-
ектива, автофокусировку, настройку освещения 
по принципу Келера, установку в ход лучей све-
тоделительных блоков для реализации люми-
несцентного метода или блоков для реализации 
темного поля, поляризации, дифференциально-
интерференционного контраста. Моторизован-
ные апертурная и полевая диафрагмы осветите-
лей обеспечивают автоматическую регулировку 
контраста и освещенности как в отраженном, 
так и в проходящем свете. Для надежности 
воспроизведения система позволяет сохранять 
и в любой момент восстанавливать настройки 
диафрагм для конкретных объективов. 

Система ACR (Automatic Component Recogni-
tion) представляет собой инновационную кон-
цепцию автоматического распознавания объ-
ективов и светоделительных модулей в моделях 
Axio Imager.Z2 (Carl Zeiss) с помощью чипа. 
При замене блока система немедленно реги-
стрирует новый компонент в системе управле-
ния и в последующих настройках микроскопа 

Рис. 8. Современный парк световых  микроскопов, включая и новые групы микроскопов, появившихся 
в начале XXI века.
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участвуют параметры уже нового элемента. 
Преимуществом данного способа является от-
сутствие ошибок и сложного процесса програм-
мирования управления.

Если для микроскопов плоского поля мо-
торизованное управление существовало еще в 
конце 90-х годов и было реализовано практиче-
ски во всех исследовательских вариантах моде-
лей ведущих фирм, то для стереомикроскопов 
управление такими функциями, как фокуси-
ровка и регулировка плавной смены увеличе-
ния (zoom), реализованное в микроскопах серии 
StereoDiscovery/Lumar (рис. 11а), представляет 
интерес [15]. Моторизованное управление ми-
кроскопом ведется двумя способами. 

Способ 1. Осуществляется с помощью двух 
блоков управления HIP (Human Interface Panel, 
рис. 11б), устанавливаемых на оптической го-
ловке микроскопа и на фокусировочном меха-
низме.

Способ 2. Обеспечивает управление и кон-
троль с помощью вынесенного блока SyCoP 
(System Control Panel, рис. 11в, г). Блок обе-
спечивает полное управление микроскопом: 
фокусировку, изменение увеличения, регу-
лировку освещенности в плоскости предмета, 
установку блоков люминесцентных светофиль-
тров и объективов (при наличии револьверного 
устройства). На ЖК-экране отображается ин-
формация о текущем моменте: общее увеличе-
ние, линейное поле на предмете, разрешающая 
способность, глубина резкого видения, инфор-
мация об освещенности в плоскости предмета. 
Обычно информация об основных параметрах 
стереомикроскопа в текущий момент времени 
затруднена из-за неопределенности увеличе-
ния при работе с zoom-системами. Это приво-
дит к усложненному расчету поля на предмете и 
разрешающей способности стереомикроскопа. 
Глубину резкости обычно определяли “на гла-
зок”. Фиксированные параметры стереомикро-
скопа обеспечивают точность воспроизведения 
эксперимента, с одной стороны, а с другой – по-
зволяют сравнивать эталонный образец с раз-
ными экземплярами или анализировать разме-
ры и состояние объекта в динамике [16].

4. Новый этап развития стереоскопических 
микроскопов связан не только с моторизацией 
основных элементов управления, но и с изме-
нением самих параметров микроскопа. Наме-
тились тенденции к увеличению коэффициента 
плавной смены увеличения с одновременным 
увеличением разрешающей способности. На-
пример, в стереомикроскопе Stereo Discovery.

V20 (Carl Zeiss) коэффициент увеличения со-
ставляет 1:20, при этом на единой базе обеспе-
чивается стереоизображение и плоское изобра-
жение большого увеличения и разрешения с 
объективом PlanApoS3,5x mono большой чис-
ловой апертуры. Общее увеличение микроскопа 
при этом находится в диапазоне 65,6–1312,5×; 
рабочее расстояние остается постоянным во 
всем  диапазоне изменения увеличения и равно 
16 мм; линейное поле на предмете в зависимо-
сти от увеличения меняется в диапазоне 0,18–
3,5 мм. В аналогичных микроскопах разных 
фирм одновременно может быть закреплено 
2 объектива на салазках или 3 объектива в ре-
вольверном устройстве. 

По другому пути идут разработки Leica. Ми-
кроскоп М205 с коэффициентом панкратики 
1:20,5 имеет интересную двухканальную систе-
му FusionOptics, которая одновременно созда-
ет изображение и с высоким разрешением, и с 
большой глубиной резкости. 

5. Развитие инвертированных микроскопов 
полностью подчинено биотехнологии и исследо-
ваниям живой клетки [17]. Инвертированные 
микроскопы делятся по классам сложности на 
рабочие, лабораторные, исследовательские и 
универсальные модели. Конструктивно они мо-
гут быть выполнены для работы в проходящем 
или отраженном свете или быть микроскопами 
смешанного типа. 

Упрощенный тип инвертированного микро-
скопа проходящего света обычно выпускается 
третьими странами. В этих моделях, как пра-
вило, не реализуется люминесцентный метод 
исследования в отраженном свете (и они авто-
матически не относятся к металлографическим 
инвертированным микроскопам отраженно-
го света); фазовый контраст настраивается на 
заводе-изготовителе; конденсор с большим рас-
стоянием имеет числовую апертуру порядка 
0,2–0,3; комплект объективов стандартно име-
ет увеличение 4–20×. 

Представляет интерес оптика современных 
инвертированных универсально-исследователь-
ских моделей, являющихся базой для лазерных 
сканирующих микроскопов и новых систем 
с использованием лазерных технологий типа 
TIRF (Total Internal Reflection Fluorescence Mi-
croscopy – технология полного внутреннего от-
ражения в люминесцентной микроскопии).

Например, фирма Carl Zeiss предлагает к ис-
пользованию в люминесцентной микроскопии 
такие объективы, как LCI Plan-NEOFLUAR 
25×/0,80 и 63×/1,30 Imm Korr, предназначенные 
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специально для визуализации живых клеток и 
созданные в расчете на работу в определенном 
интервале температур.

Широкое распространение получили ком-
плекты объективов водной иммерсии, приме-
няемые как в физиологии, так и в клеточной 
люминесцентной микроскопии. 

Развитие репродукционной и клеточной 
микроскопии привело к развитию рельефных 
методов контрастирования. Эти методы (Hof-
fman-contrast, Varel-contrast, DIC, Plas-DIC и 
т. д.) в отличие от фазового контраста, позволя-
ют визуализировать нативные (неокрашенные) 
клетки в подвижном состоянии. В этих методах 
контрастирования отсутствует стандартный га-
лаэффект, ухудшающий качество изображения 
(рис. 12).

6. Во вновь разрабатываемых микроскопах 
наблюдается переход на энергосберегающие 
источники света – светодиодные осветители 
(LED) со сроком службы около 100 тыс. часов. 
В настоящее время осветители со светодиодами 
устанавливают в микроскопы проходящего све-
та с традиционными методами исследования, 
в том числе и в стереомикроскопы, а также ис-
пользуют для люминесцентных методов иссле-
дования в проходящем и отраженном свете. 

Проведенные консалтинговой фирмой “Мик-
роскоп Плюс” апробации микроскопов с LED-
источниками разных фирм показали, что:

высокая яркость источника хороша для  –
биологических объектов, но для сильно отра-
жающих объектов есть опасность появления то-
чечных бликов, особенно в падающем свете при 
наблюдении в стереомикроскопах при малом 
увеличении. Требуется наличие матовых или 
диффузных светофильтров для смешивания то-
чечных источников при наблюдении как боль-
ших полей при малом увеличении, так и малых 
полей при большом увеличении;

устанавливаемые в упрощенные и лабора- –
торные модели LED-источники имеют смещение 
спектральной кривой в синюю область спектра, 
что меняет привычную для российского пользо-
вателя желто-белую окраску фона. Для измене-
ния этой ситуации фирма Carl Zeiss предлагает 
в комплекте Axio Scope A1 желтый светофильтр 
или установку светодиода White LED. В то же 
время, в микроскопе СХ21 Olympus подобной 
проблемы не существует. Следует отметить, что 
при этом освещаемое линейное поле (10×18) 
в микроскопе Olympus меньше, чем в микро-
скопе Zeiss (10×23), что является немаловаж-
ным фактором. Чем больше освещаемое линей-

ное поле, тем больше требуется усилий для по-
лучения яркого равномерного освещения. Чаще 
всего диоды собирают в пакеты, как растро-
вые элементы, и затем с помощью диффузора 
или коллекторной системы, включающей диф-
фузор, обеспечивают освещение  больших полей; 

в люминесцентных микроскопах примене- –
ние светодиода аналогично применению лазера, 
т. е. источника с определенной длиной волны, 
что в отличие от ртутной лампы с линейчатым 
спектром, накладывает определенные ограни-
чения. Линейчатый спектр имеет более широ-
кую полосу пропускания в максимуме. В этом 
случае один источник света имеет несколько 
максимумов в широком спектральном диапазо-
не: от УФ до ближней ИК области. В то же вре-
мя, при работе с LED требуется переключение 
с одного светодиода на другой, если требуется 
переход от одной длины волны к другой; 

основным положительным фактором ис- –
пользования LED является “чистое”, контраст-
ное изображение, получаемое как в светлом 
поле, так и в свете люминесценции. Отмечается 
отсутствие фоновой засветки, которая наблюда-
ется при использовании галогенной или ртутной 
лампы, обладающих большим рассеивающим 
эффектом при проникновении света в стекло и 
препарат. При работе в свете люминесценции 
препарат медленнее выцветает, т. к. есть воз-
можность регулирования яркости светодиода;

однако, кроме эпи-люминесцентных осве- –
тителей, современный рынок предлагает лю-
минесцентный диодный модуль проходящего 
света фирмы FRAEN, разработанный для мо-
делей микроскопов эконом-класса. Существу-
ет 2 варианта модуля: с одним светодиодом и 
с тремя светодиодами. В наблюдении препарата 
с помощью люминесценции проходящего света 
свет проходит через объект и светящиеся струк-
туры более четко выделяются в изображении 
объекта. С другой стороны, люминесцентный 
микроскоп отраженного света имеет преимуще-
ство, связанное с тем, что есть возможность про-
сматривать препарат в обычном проходящем 
свете с использованием, например, фазового 
или рельефного контраста (ДИК). В любом слу-
чае при выборе того или иного типа микроскопа 
следует учитывать особенности решаемых задач.

По результатам апробаций стало ясно, что 
для люминесцентного метода исследования 
при подборе светодиода с определенной длиной 
волны требуется более тщательно учитывать 
тип красителя и состав комплекта запирающих 
светофильтров.
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К энергосберегающим источникам света от-
носятся и металло-галогенные лампы, напри-
мер, HXP-120, применяемые в люминесцент-
ной микроскопии практически всеми фирмами. 
Они имеют такой же спектр излучения, как и 
лампы HBO, но не так сильно нагревают шта-
тив, т. к. передают свет через световод. Такие 
источники особенно подходят для наблюдения 
живых клеток при флуоресцентном освещении. 

Светодиодный осветитель Colibri (Carl Zeiss) 
отличается точной настройкой интенсивности 
свечения и гибкостью комбинирования раз-
личных длин волн. Осветитель обеспечивает 
включение в течение микросекунд. Он удобен 
для проведения комплексных исследований 
при максимальных скоростях прохождения ре-
акций. Наибольший интерес представляет со-
вместное применение HXP-120 и Colibri. Таким 
образом, могут возбуждаться те красители, 
для которых сегодня еще не существуют свето-
диоды.

7. Освещение больших полей актуально не 
только в осветительных системах с диодами. 
Например, в микроскопах Nikon, где использу-
ются объективы малых увеличений (0,5×–2×), в 
исследовательских моделях предлагается при-
менение системы “a fly-eye lens” . Около 300 
микролинз по типу сетчатки глаза мухи со-
ставляют растровую систему, обеспечивающую 
проекцию и смешение излучения точечных ис-
точников света в плоскости предмета. Этим до-
стигается улучшенная освещенность и равно-
мерность в центре и по периферии поля, что 
гарантирует комфорт при наблюдении во всем 
диапазоне увеличения. Это имеет особое значе-
ние для цифровой обработки изображений. По 
сравнению с человеческим глазом, цифровые 
датчики более чувствительны к различиям в 
интенсивности и равномерности освещения. 

8. Документирование и анализ процессов, 
происходящих с объектом, все то, что ведет к 
дифференциации, регенерации или росту кле-
ток, тканей и организмов, предъявляют особен-
но высокие требования к системе микроскопа 
[17]. Высокое качество изображения гаранти-
руют: идеальное однородное освещение в пло-
скости предмета при использовании распростра-
ненных методов контрастирования в проходя-
щем или отраженном свете; наилучшее оптиче-
ское разрешение и люминесцентное освещение, 
щадящее пробы, при оптимальном соотноше-
нии сигнал/шум. Современные компьютерные 
программы для визуализации и анализа изобра-
жения в совокупности с новыми оптическими 

системами микроскопа, а также моторизацией 
микроскопов обеспечивают эффективную и вос-
производимую визуализацию, а также позволя-
ют фиксировать исследуемые процессы с высо-
ким разрешением не только пространственно, 
но и во времени, а также с разными скоростны-
ми режимами. 

Это же относится к технической микроско-
пии. Автоматизация процессов измерения сво-
дится к применению специализированных ком-
пьютерных программ, обеспечивающих анализ 
образцов по принятым в материаловедении 
стандартам: неметаллические включения, вы-
явление и определение величины зерна, в т. ч. 
определение размера ферритного или аусте-
нитного зерна и т. д. Это предъявляет особые 
требования к конструкции металлографиче-
ских микроскопов, мало чем отличающихся от 
требований к биологическим микроскопам, в 
том числе и моторизованным. Наряду со стан-
дартными методами контрастирования (светлое 
поле, темное поле и поляризация), в настоящее 
время все больше для исследований применя-
ют рельефный контраст – дифференциально-
интерференционный контраст – повышающий 
точность измерений и информативность резуль-
татов изучения объекта [18].

9. Повышение разрешающей способности 
всегда было основной проблемой при создании 
оптических систем микроскопов и их конст-
рукций. Актуальность этого возрастала по мере 
повышения интереса к люминесцентным ме-
тодам исследования. 

Когда в процессе проведения экспериментов 
используются наборы светофильтров, обеспе-
чивающих близкие спектры возбуждения и 
эмиссии, то появляется перекрестная связь 
этих спектров, что влияет на получаемую об-
щую картину. Это серьезная проблема в ко-
личественной микроскопии. Многоканальное 
разделение свечений решает эту проблему без 
дополнительных аппаратных средств. Решить 
проблему можно с помощью компьютерных 
программ обработки, например, модулем Axio-
Vision Widefield Multichannel Unmixing (широ-
копольное многоканальное разделение свече-
ний). Этот модуль удаляет перекрестную связь 
между различными красителями в каналах 
и освобождает от задачи поиска подходящих 
комбинаций красителей. Это происходит че-
рез калибровку системы с чистыми красителя-
ми или альтернативно посредством Automatic 
Component Extraction Carl Zeiss. Даже цвето-
вые комбинации частично совмещенных краси-
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телей, например, CFP и GFP или YFP и DsRed, 
дают достаточно устойчивый результат наблю-
дения без перекрещивания в пределах образца. 
Кроме того, (авто)флуоресценция, возникаю-
щая в образце и типичная для определенных 
клеток или тканей, или вызванная определен-
ными веществами, может быть удалена.

Другие проблемы связаны с наблюдением 
толстых образцов и в настоящее время для ре-
шения подобной задачи существует несколько 
направлений:

создание оптико-механических модулей,  –
позволяющих “очищать” световой поток, отра-
женный от объекта, от “вредного” света, нахо-
дящегося выше или ниже плоскости наилуч-
шей установки на препарате; 

создание систем, создающих “оптические  –
срезы” в плоскости изображения;

использование полного внутреннего от- –
ражения для выделения тонкого слоя в пре-
парате. 

А). В начале XXI века фирма Carl Zeiss пред-
ложила новую технологию ApoTome – создание 
структурированного освещения, позволяюще-
го получать тонкие оптические срезы, с удале-
нием дополнительных свечений выше и ниже 
фокальной плоскости объектива. За счет этого 
в изображении улучшается контраст и повы-
шается разрешение.

В плоскость полевой диафрагмы осветителя 
отраженного света устанавливается подвиж-
ный контур, управляемый с помощью специ-
альной программы. Изображение сетки проеци-
руется непосредственно в плоскость препарата. 
Если сетка неподвижна, то ее изображение мож-
но видеть через окуляры и с помощью камеры.

Изображение регистрируется камерой в 
трех положениях сетки (перемещение сетки в 
плоскости препарата). Область, в которой из-
менение яркости высокое, относится к фокаль-
ной плоскости; там, где яркость меняется не-
значительно, – сигналы из плоскости вне фоку-
са удаляются (рис. 13). Таким решением дости-
гаются:

увеличение осевого разрешения в 2 раза, –
улучшенное соотношение “сигнал–фон”  –

(контраст),
удаление из фокуса лишнего света, –
оптическая предпосылка для 3D изображе- –

ния и 3D реконструкций.
Б). Сегодня трудно представить научные ин-

ституты без лазерных сканирующих или кон-
фокальных систем. Опто-электронная система 
с лазерным блоком обеспечивает сканирование 

объекта по осям XYZ. Важным элементом яв-
ляется точечная диафрагма (регулируемая в за-
висимости от числовой апертуры объектива), 
расположенная в плоскости изображения и 
сопряженная (конфокальная) с точкой фоку-
са объектива. Для создания изображения бо-
лее чем из одной точки зоны фокуса требуется 
проведение сканирования по осям. Полученное 
точечное изображение содержит информацию 
только из зоны фокуса, которое регистрируется 
детектором. Таким образом формируется опти-
ческий срез. В зависимости от поставленной 
задачи количество лазеров и детекторов может 
быть разным. Сканирование можно проводить 
с помощью вращающихся дисков для обычной 
флуоресцентной микроскопии, или с исполь-
зованием лазерного луча в установке конфо-
кального лазерного сканирующего микроскопа 
(LSM). С помощью компьютерной обработки 
изображения проводятся геометрические и 
оптические измерения, регистрация сигналов, 
создание объемных реконструкций. В настоя-
щее время лазерные системы созданы как для 
медико-биологических исследований, так и для 
материаловедения.

В) Флуоресцентная микроскопия полного 
внутреннего отражения (TIRF-метод) исполь-
зуется при изучении взаимодействия отдель-
ных молекул или мембранных процессов. Для 
создания изображения используется тонкий 
образец (около 200 нм) и луч возбуждения, 
направленный под углом полного внутренне-
го отражения, проникающий на небольшую 
глубину. Числовая апертура объектива 100× 
должна быть более 1,45 (рис. 14). Объекти-
вы Carl Zeiss α Plan-APOCHROMAT 100×/1,46 
Oil и 100×/1,57 HI Oil, имеющие сверхвысо-
кие числовые апертуры, дают максимальное 
разрешение как при люминесцентных мето-
дах исследования, так и в комбинации с мето-
дом DIC. Следует отметить, что фирмы име-
ют разные по степени исправления полевых 
аберраций объективы, обеспечивающие эту 
методику.

Достаточно популярна еще одна технология 
с использованием лазера. Это микродиссекция – 
выделение интересующего элемента (напри-
мер, живой клетки, хромосомы, макромолеку-
лы определенного вида) из имеющегося биоло-
гического материала без его загрязнения и по-
вреждения. Эта же технология позволяет про-
изводить изъятие интересующего элемента и 
транспортировку его с помощью специального 
контейнера.
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Заключение

Анализ состояния современной световой 
микроскопии первого десятилетия XXI века по-
зволяет определить следующие основные тен-
денции:

производство микроскопов эконом-класса  –
ведущих фирм разработчиков налажено в ос-
новном в Китае, микроскопы высокого качества 
изображения – в стране разработчика;

появились новые фирмы Австрии, Китая,  –
Японии, заполняющие нишу упрощенных и 
рабочих моделей микроскопов разных типов, 
в том числе микроскопов со встроенными циф-
ровыми камерами;

современные микроскопы проходящего  –
и отраженного света разных типов и классов 
сложности выпускаются с единой длиной тубу-
са “бесконечность” и с оптикой, скорректиро-
ванной по хроматическим аберрациям;

в конструкции микроскопов наблюдается  –
высокий уровень модульности, обеспечиваю-
щий гибкость при компановке моделей;

появились новые группы микроскопов, та- –
кие как виртуальные микроскопы, цифровые 
микроскопы, лазерные сканирующие микро-
скопы;

расширился круг методов исследования  –
за счет появления рельефных контрастов и в 
первую очередь дифференциально-интерферен-
цион ного контраста Плас-ДИК, применяемых 
в биологии, репродукционной медицине и в 
металлографии; 

все больше внедряются светодиодные  –
осветители для проходящего света и люмине-
сценции;

новые технологии и, прежде всего, исполь- –
зование лазерной технологии расширяют ин-
формативное поле об объектах исследования и 
их свойствах. 
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Рис. 14. Принципиальная схема проведения 
исследований по методу TIRF (флуоресцент-
ная микроскопия полного внутреннего отра-
жения). 


