Оптический журнал

УДК 535.232.65

Методика измерения мощности излучения исследуемого материала и модели абсолютно черного тела для определения нормальной излучательной способности материала

© 2020 г. В. Я. Менделеев, канд. техн. наук; В. В. Качалов, канд. техн. наук

Объединенный институт высоких температур Российской академии наук, Москва E-mail: v_mendeleyev@list.ru

Поступила в редакцию 11.10.2019

DOI:10.17586/1023-5086-2020-87-01-77-80

При измерениях нормальной излучательной способности материалов предполагают, что плотность потока излучения на поверхности исследуемого материала и модели абсолютно черного тела распределена равномерно. Однако из-за конструктивных особенностей нагревателей исследуемого материала и модели абсолютно черного тела это предположение не всегда выполняется. В настоящей статье предложена методика измерения мощности излучения поверхностей исследуемого материала и модели абсолютно черного тела, имеющих равномерную плотность потока излучения в центральной области поверхностей. Возможность измерения мощности излучения поверхности с равномерной плотностью потока излучения подтверждена экспериментально на образце оксида алюминия при температуре 1195 К.

Ключевые слова: излучательная способность, плотность потока излучения, мощность излучения, площадь излучающей поверхности.

Коды OCIS: 120.5630, 120.4640

Важной характеристикой материалов, участвующих в теплообмене излучением, является нормальная излучательная способность («нормальная» — в направлении, перпендикулярном излучающей поверхности) [1]. Эта характеристика определяется как отношение нормальной мощности теплового излучения (далее «мощность излучения») исследуемого материала к мощности излучения модели абсолютно черного тела (АЧТ), измеренных одним и тем же измерителем мощности при одинаковых температурах и размерах излучающих поверхностей. При этом полагается [2-7], что нормальные плотности потоков излучения (далее «плотность потока») исследуемого материала и модели АЧТ распределены равномерно по площади излучающей поверхности. Однако из-за конструктивных особенностей нагревателей исследуемого материала и модели АЧТ [8, 9] плотность потоков указанных излучающих поверхностей может быть распределена неравномерно. Эти неравномерности могут приводить к дополнительной погрешности определения нормальной излучательной способности исследуемого материала. Возможным путем решения этой проблемы является измерение мощности излучения в центральной области поверхности, где исследуемый материал и модель АЧТ имеют равномерное распределение плотностей потоков теплового излучения, описываемое линейной зависимостью мощности излучения от площади излучающей поверхности [10].

В настоящем исследовании полагается, что плотности потоков излучения распределены равномерно в центральной области поверхностей и неравномерно за пределами центральной области.

Возможность измерения мощности излучения поверхности с равномерным распределением потока теплового излучения в центральной области поверхности исследовалась экспериментально на образце оксида алюминия при температуре 1195 К.

Обмен опытом

Это исследование показало возможность измерения мощности излучения поверхности с равномерным распределением потока излучения по линейной зависимости мощности излучения от площади излучающей поверхности. На основании результатов этого исследования предложена методика измерения мощности излучения поверхности исследуемого материала и модели АЧТ.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Структурная схема экспериментальной установки для измерения мощности излучения образца из оксида алюминия представлена на рис. 1. В состав нагревателя установки входит нагревательный элемент, выполненный из проволоки Pt/Rh30, который установлен в обечайку из высокотемпературной керамики OXIDAL–1750 ($Al_2O_3 - 99,5\%$ и SiO₂ — 0,3%). Размер нагревательного элемента составляет 30×30 мм. На нагреватель установлена подложка из двух никелевых пластин, между которыми вставлен королек хромель-алюмелевой термопары. На никелевую подложку помещается исследуемый образец квадратной формы со стороной 30 мм и толщиной 3 мм из оксида алюминия

Рис. 1. Структурная схема экспериментальной установки для измерения мощности излучения. 1 — нагреватель, 2 — никелевая подложка, 3 — электроды хромель-алюмелевой термопары, 4 — исследуемый образец, 5 — соломка из оксида алюминия, 6 — экран, 7 стальной фланец № 1 с водяным охлаждением, 8 — медная пластина с поглощающим покрытием, 9 — стальной фланец № 2, 10 — диафрагма, 11 — приемник теплового излучения.

 $({\rm Al}_2{\rm O}_3-99,8\%$ и MgO — 0,2%). Размер излучающей поверхности образца ограничивается медным экраном со световым диаметром 30 мм. Экран размещен на стальном водоохлаждаемом фланце (№ 1). Между экраном и излучающей поверхностью исследуемого образца помещены соломки из оксида алюминия диаметром 1 мм. На расстоянии 115 мм от поверхности образца на стальном фланце (№ 2) с поглощающим покрытием установлена медная диафрагма. Чувствительная площадка приемника теплового излучения находится на расстоянии 320 мм от поверхности исследуемого образца. Приемник S302C теплового излучения с чувствительной площадкой диаметром 12 мм имеет спектральный интервал измерений 0,19-25 мкм и диапазон измерения мощности от 10^2 до 2×10^6 мкВт.

На оптической схеме экспериментальной установки, приведенной на рис. 2, поверхность образца материала при температуре Т ограничивается экраном радиусом R, кроме этого, она включает диафрагму с радиусом световой апертуры R_d и чувствительную площадку приемника теплового излучения радиусом $R_{\rm s}$. В рассматриваемой схеме радиус $R_{\rm s}$, расстояние $L_{\rm d}$ от поверхности образца до диафрагмы и расстояние L_o от поверхности образца до чувствительной площадки приемника являются фиксированными. При этом размер чувствительной площадки приемника существенно меньше расстояния до излучающей поверхности и виньетированием излучения можно пренебречь. Радиус световой апертуры диафрагмы может изменяться, при этом меняется и площадь поверхности, излучающей на чувствительную площадку приемника.

Из оптической схемы (рис. 2) следует, что радиус *r* поверхности, излучающей на чувствитель-

Рис. 2. Оптическая схема экспериментальной установки. 1 — образец материала при температуре T, 2 экран, 3 — диафрагма, 4 — чувствительная площадка приемника теплового излучения, R — радиус световой апертуры экрана, r — радиус поверхности, излучающей на чувствительную площадку приемника 4, R_d — радиус световой апертуры диафрагмы 3, R_s — радиус чувствительной площадки 4, L_d и L_o — расстояния от поверхности образца до диафрагмы 3 и до чувствительной площадки 4 соответственно.

ную площадку приемника, описывается выражением

$$r = (R_{\rm d}L_{\rm o} - R_{\rm s}L_{\rm d})/(L_{\rm o} - L_{\rm d}).$$
 (1)

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

В экспериментах применялись сменные диафрагмы с диаметрами светового отверстия 7, 10, 12, 14,5, 17,5, 19,5, 22, 24,5 и 30 мм.

При исследовании образца оксида алюминия мощность излучения, падающего на чувствительную площадку приемника, измерялась с каждой сменной диафрагмой при температуре нагревателя 1195 К. При этом радиус излучающей поверхности рассчитывался по соотношению (1). На рис. 3 приведен график зависимости измеренной мощности *P* излучения от площади *S* излучающей поверхности $S = \pi r^2$.

В центральной области поверхности вплоть до значений, близких к $S \approx 170 \text{ мm}^2$, график, приведенный на рис. 3, хорошо аппроксимируется линейной зависимостью $P = P_0 + aS$, где $P_0 = 492,31$ мкВт и a = 9,296 мкВт/мм². При дальнейшем увеличении площади излучающей поверхности вплоть до 707 мм² ($2R \approx 30$ мм) зависимость мощности излучения от площади излучающей поверхности вплоть с уменьшением температуры поверхности на периферии нагревателя. Некоторое увеличение мощности излучения при площади излучающей поверхности вприферии нагревателя. Некоторое увеличение мощности излучения при площади излучающей поверхности в вкладом теплового излучения экрана в регистрируемую мощность излучения.

Таким образом, из графика, приведенного на рис. 3, следует, что экспериментальная зависимость мощности излучения оксида алюминия от площади излучающей поверхности хорошо аппроксимируется линейной зависимостью в цен-

Рис. 3. Экспериментальная зависимость мощности P излучения от площади S поверхности, излучающей на чувствительную площадку приемника излучения.

тральной области поверхности вплоть до площади излучающей поверхности 170 mm^2 (2 $r\approx14,8$ мм).

79

Этот результат позволяет полагать, что аналогичным образом может быть получена линейная зависимость мощности излучения модели АЧТ от площади излучающей поверхности при такой же температуре 1195 К. В этом случае мощности излучения, полученные при одинаковых площадях поверхностей исследуемого материала и модели АЧТ, можно использовать для определения излучательной способности исследуемого материала.

МЕТОДИКА ИЗМЕРЕНИЯ МОЩНОСТИ ИЗЛУЧЕНИЯ

На основании описанных выше результатов методику измерения мощности излучения поверхностей исследуемого материала и модели АЧТ для определения излучательной способности исследуемого материала при заданной температуре можно представить следующей последовательностью процедур:

1) экспериментальное определение зависимостей мощности излучения исследуемого материала и модели АЧТ от площади излучающих поверхностей,

2) выделение на экспериментальных зависимостях исследуемого материала и модели АЧТ участков линейной зависимости мощности излучения от площади излучающей поверхности,

3) определение значений мощности излучения, соответствующих одинаковым площадям поверхности исследуемого материала и модели АЧТ на выделенных линейных участках зависимостей мощности излучения от площади поверхности,

4) применение полученных значений для определения излучательной способности исследуемого материала при заданной температуре.

ЗАКЛЮЧЕНИЕ

Экспериментально исследована зависимость мощности излучения оксида алюминия от площади излучающей поверхности при температуре 1195 К. В центральной области поверхности площадью вплоть до 170 мм² обнаружена линейная зависимость мощности излучения от площади излучающей поверхности, свидетельствующая о равномерной плотности потока излучения. Для определения излучательной способности исследуемого материала предложена методика измерения мощности излучения материала и модели абсолютно черного тела в области линейной зависимости мощности излучения от площади излучающих поверхностей.

Авторы благодарны В.В. Пилипенко и В.А. Моздыкову за помощь в подготовке экспериментальной установки.

80 Том 87, № 1 /Январь 2020/ Оптический журнал

ЛИТЕРАТУРА

- 1. Спэрроу Э.М., Сесс Р.Д. Теплообмен излучением. Л.: Энергия, 1971. 294 с.
- 2. Hanssen L., Wilthan B., Monte C., et al. Report on the CCT supplementary comparison S1 of infrared spectral normal emittance/emissivity // Metrologia. 2016. V. 53 (Technical Suppl): 03001.
- 3. Campo L., Pérez-Sáez R.B., Esquisabel X., et al. New experimental device for infrared spectral directional emissivity measurements in a controlled environment // Rev. Sci. Instrum. 2006. V. 77. P. 113111.
- 4. Varaksin A.Yu., Romash M.E., Kopeitsev V.N. The possibility of generation of concentrated fire vortices without forced swirling // Doklady Physics. 2014. V. 59. № 5. P. 203–205.
- 5. *Li L., Yu K., Zhang K., et al.* Study of Ti-6Al-4V alloy spectral emissivity characteristics during thermal oxidation process // Int. J. Heat Mass Tran. 2016. V. 101. P. 699–706.
- 6. Liang H., Yang F., Wang G., et al. Study of the optical and absorption properties of micro-nanostructure on metal surfaces // Оптический журнал. 2019. Т. 86. № 2. С. 28–33.
- 7. *Перцович Б.В., Живоносновская А.С., Скворцов Д.М.* Имитационное моделирование сигнатуры теплового объекта // Оптический журнал. 2018. Т. 85. № 4. С. 28–35.
- Hanssen L., Mekhontsev S., Khromchenko V. Infrared spectral emissivity characterization facility at NIST // Proc. SPIE. 2004. V. 5405. P. 1–12.
- 9. Monte C., Hollandt J. The measurement of directional spectral emissivity in the temperature range from 80 °C to 500 °C at the Physikalisch-Technische Bundesanstalt // High Temperatures-High Pressures. 2010. V. 39. P. 151–164.
- 10. Излучательные свойства твердых материалов / Под ред. Шейндлина А.Е. М.: Энергия, 1974. 473 с.