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With the advantages of low cost and real-time acquisition of depth and color maps of the 
object, Time-of-Flight (ToF) camera has been used in 3D reconstruction. However, due to the 
hardware shortage of ToF sensors, the depth maps obtained by ToF camera has a lot of noise, 
which limits its subsequent application. Therefore, it is necessary to denoise the depth maps 
by software method. We propose an algorithm for denoising depth maps by combining the 
bilateral filter and Progressive Convolution Neural Networks (PCNN). The algorithm takes 
a single depth map as input. Firstly, the first individual network of the PCNN is used to denoise 
the depth map, and then the bilateral filter and the second individual network of the PCNN are 
used to further process, so that the edge information of depth maps can be retained on the basis 
of fine denoising. Finally, we have carried out experiments on the popular Middlebury dataset. 
The experimental results show that the proposed algorithm is obviously superior to the traditional 
methods.
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networks.
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Устранение шумов в картах глубин 
с использованием билатерального фильтра 
и прогрессивных свёрточных нейронных сетей
© 2020 Г. SHUAIHAO LI, WEIPING ZHU, BIN ZHANG, XINFENG YANG, MIN CHEN

В силу невысокой стоимости и возможности работы в реальном времени, времяпролёт-
ные камеры широко используются для получения трёхмерных изображений. Тем не менее, 
из-за особенностей технического воплощения такие камеры обладают заметным уровнем шу-
мов, что является препятствием их использования. Устранение влияния шумов выполня-
ется путём соответствующей обработки изображений. Предложен алгоритм устранения шу-
мов путём комбинации билатерального фильтра и прогрессивных свёрточных нейронных 
сетей (PCNN). Алгоритм стартует с единичной карты глубины. На первом шаге для устра-
нения зашумлённости используется первая отдельная свёрточная сеть (PSNN), затем – би-
латеральный фильтр и вторая свёрточная сеть, в результате чего выделяется информация 
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о границах. Эксперименты, выполненные с использованием распространенной базы изо-
бражений Middlebury, показали очевидные преимущества предложенного алгоритма перед 
традиционными. 

Ключевые слова: устранение шумов, карты глубины, трёхмерные изображения, билатеральный 

фильтр, прогрессивная свёрточная нейронная сеть.

1. INTRODUCTION 
As a kind of depth camera, Time of Flight (ToF) 
camera [1] can obtain accurate depth informa-
tion from scene to depth camera in real time, 
which makes it widely used in computer vision 
fields, such as virtual reality, augmented real-
ity and 3D reconstruction. By combining with 
the Unmanned Aerial Vehicle (UAV), ToF cam-
era can be used in rapidly 3D reconstruction of 
large outdoor scenes such as a building [2]. But 
the depth maps obtained by ToF camera usual-
ly contain a lot of noise, which seriously limit 
the subsequent steps of 3D reconstruction, such 
as point cloud computing, point cloud registra-
tion [3] and point cloud fusion [4], and ultimate-
ly limit the surface accuracy of the 3D model [5]. 
Therefore, the noise of the depth maps must be 
removed before the 3D reconstruction. 

Denoising of depth maps has been one of the 
major challenges of computer vision in recent 
years, and many algorithms have emerged, the 
most representative of which are filtering meth-
ods: bilateral filter [6], mean filter [7], median 
filter [8] and Gaussian filter [9]. Among them, 
the bilateral filter can maintain the edge infor-
mation of depth map, but it is poor in the detail 
retention property. In recent years, with the rise 
of deep learning research, deep learning-based 
denoising algorithms have emerged [10], which 
can maintain good details after denoising depth 
maps. As a kind of deep learning, the Progressive 
Convolution Neural Network (PCNN) is superior 
to its peers for its simple structure and remark-
able denoising effect.

In this paper, a depth map denoising algo-
rithm combining the bilateral filter and the 
PCNN is proposed. Initially, the first individual 
network of the PCNN is used for denoising the 
depth map, and then the bilateral filter is adopt-
ed to enhance the edge information, and the re-
sult is used as the input of, the second individual 
network of the PCNN to further denoise the de-
tails of the depth map. Our experimental results 
show that the proposed algorithm is superior to 

the traditional methods in the Peak Signal-to-
Noise Ratio (PSNR) evaluation index and time 
consumption, and the improvement of visual ef-
fect is also obvious.

2. RELATED WORK

2.1. The bilateral filter
The bilateral filter [5] is a nonlinear filter com-
posed of spatial filter kernel function and range 
filter kernel function. The main advantage of 
bilateral filter is that the two functions can be 
used for processing the different regions of a 
single map. In low-frequency regions, the pixel 
values usually change slowly, hence, spatial fil-
ter kernel function is commonly used to remove 
the noise. While in the high-frequency regions, 
the pixel values generally change rapidly and 
therefore requires range filtering to denoise. 
The edge information of depth map can also be 
well preserved by selecting different filter ker-
nel functions for denoising in different regions.

The principle of bilateral filter is to suppress 
pixels that differ from the central pixel pixels. 
The output pixel value is determined by the 
weighted sum of the neighborhood pixel value, 
and its weight coefficient is composed of the spa-
tial neighborhood weight and the value domain 
similarity weight. The weight coefficient w is 
expressed as:
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where s is the weight coefficient of Gaussian 
filter, and r is the range similarity weight co-
efficient, while s and r together determine the 
performance of bilateral filter. The size of s de-
termines the relative spatial position of pixel 
points, while r defines the values range of pix-
el points. f(i, j) and f(k, l) are the pixel values of 
point (i, j) and point (k, l), and (k, l) is the neigh-
borhood pixel of point (i, j).
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2.2. The Progressive Convolution 
Neural Network (PCNN)
The PCNN is a kind of convolutional neural net-
work, which is composed of two individual con-
volution neural networks [11]. It uses the out-
put of the previous network as the input to the 
next network. So, for the PCNN, the input of 
each individual network is different. The PCNN 
can gradually learn the high-frequency informa-
tion of depth map for each individual network. 
Therefore, the similarity between the depth map 
output from each independent network and the 
ground truth depth map tested will be higher 
and higher, so that the denoising of the depth 
map will be realized finally. 

In theory, each PCNN can be composed of 
multiple independent networks (i.e. SRCNNs 
[12]). If we do not freeze the weights of 
SRCNNs, the PCNN will be equal to a deeper 
SRCNN with layer number the same as the 
sum of a single SRCNN. Therefore, in prac-
tice, the PCNN consists of only two SRCNNS, 
and the weights of the first SRCNN will be 
frozen in the training of the PCNN. For ex-
ample, in “PCNN(3 + 5)”, 3 + 5 refers to the 
network structure of the PCNN composed of 
two SRCNNs, 3 is the layers number of the 
first SRCNN (the weights of the SRCNN is fro-
zen), and 5 represents the layers number of the 
second SRCNN (the weights of the SRCNN is 
learnable). Similarly, “PCNN (5 + 3)” refers to 
the network structure of the PCNN consisting 
of two SRCNNs. 5 is the layers number of the 
first SRCNN (the weights of the SRCNN is fro-
zen), and 3 represents the layers number of the 
second SRCNN (the weights of the SRCNN is 
learnable). 

In addition, the PCNN must be trained first 
before denoising depth maps, therefore it needs 

multiple training datasets to train each individ-
ual network independently. The mathematical 
model of the PCNN can be denoted as
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where x is a noisy map, y is a noise-free map. 
xi and yi are training samples, SM denotes M 
convolutional neural networks, F is the output 
of SM. ÿi is the predicted value of the i-th map 
output.

The PCNN framework is shown in Fig. 1 (ex-
cluding the bilateral filter).

3. THE DEPTH MAP DENOISING 
ALGORITHM COMBINING THE BILATERAL 
FILTER AND THE PCNN

3.1. Algorithm framework
Considering the bilateral filter’s capacity of re-
taining the edge details while denoising depth 
map and the PCNN’s global excellent perfor-
mance in depth map denoising, we utilize these 
two together aiming to denoise depth map more 
efficiently. Figure 1 shows the output of the 
first individual network of the PCNN. The bilat-
eral filter is then used to further denoise in or-
der to enhance the edge details of the depth map. 
The result is subsequently used as input for the 
PCNN’s second individual network, to extract 
the noise that was not removed in the previous 
step.

3.2. Training individual network
For the proposed algorithm, the key to its imple-
mentation is the training of the PCNN, which 
includes the training of individual network and 
progressive network.

Noisy depth image

…

Output

Individual network 1 Individual network 2

…Bilateral Filter

Fig. 1. The algorithm framework combining the bilateral filter and the PCNN.
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Since the PCNN is composed of multiple con-
volutional neural networks, it is necessary to 
train individual convolution neural networks 
first. To train the network, we use the back-prop-
agation (BP) algorithm [13]. The BP al gorithm is 
one of the most effective learning methods for 
convolution neural networks. Its main charac-
teristics are signal forward transmission and 
error backward propagation. By constantly ad-
justing the network weight value, the final out-
put of the network is as close as possible to the 
expected output, so as to achieve the purpose of 
training.

We selected Middlebury dataset [14] for train-
ing and testing. For the training samples, we se-
lected 75 depth maps randomly from Middlebury 
dataset. In order to improve the validity of the 
training data, we transformed and expanded the 
original training samples: first, we flipped the 
original 75 training samples vertically to obtain 
150 maps, and then the 150 depth maps were ro-
tated 90, 180, 270 and magnified 3–6 times. 
We finally get 1800 (i.e. 15034) depth maps 
as the initial input of the network, that is, the 
training set.

We first train a three-layer SRCNN as the 
benchmark, with a network structure of 9–5–5. 
Where, the size of the convolution kernel in the 
first layer is 99, and the dimension of the convo-
lution kernel is 64. The size of the feature map is 
(33 – 9)/1 + 1 = 25. Second and third layers have 
the same convolution kernel size and dimension, 
which are 55 and 32, respectively. The size of the 
feature map obtained after the convolution of the 
second layer is (25 – 5)/1 + 1 = 21, and the size 
of the feature map obtained after the convolu-
tion of the third layer is (21 – 5)/1 + 1 = 17. Zero 
padding is not used during training. In order 
to obtain faster convergence speed, we use this 
method to iteratively generate deeper SRCNN, 
for example, from layer 4 SRCNN 9–5–3–5, to 
layer 5 SRCNN 9–5–3–3–5, to layer 6 SRCNN 
9–5–3–3–3–5, and so on.

The training objective is to minimize the 
Euclidean distance loss.

Euclidean distance Loss is denominated as 
the mean of the squared Euclidean distance be-
tween the estimated and predicted values of the 
calculated samples. The formula [15] is
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3.3. Training the PCNN
For the PCNN, the training algorithm and da-
taset are consistent with the individual net-
work. In the PCNN training, we combined and 
arranged two SRCNNs in the chain order. In the 
experiments carried out, the numbers of convo-
lution layers of the first SRCNN and of the sec-
ond SRCNN were set as 3 + 3, 3 + 5, 5 + 3 and 
5 + 5, respectively. Each number denotes the 
number of layers in the SRCCN. These different 
fusion schemes are set up to compare the per-
formance of different networks. For example, 
the accuracy of the PCNN 5 + 3 is lower com-
pared to the PCNN 3 + 5. The reasons are that 
the weights of the first SRCNN need to be fro-
zen in the training PCNN, and more parame-
ters could be fine-tuned in the PCNN 3 + 5 com-
pared to the PCNN 5 + 3, the accuracy is expect-
ed to be better. The feature map output, such 
as learning rate and weight initialization from 
the first SRCNN serves as the input of the sec-
ond SRCNN. If the weights of the first individ-
ual network are not frozen, the PCNN is equal 
to a deeper individual net work, and its number 
of layers is the same as the sum of the layers of 
the individual network. Therefore, the PCNN 
consists of only two separate SRCNN, and the 
weights of the first SRCNN needs to be frozen 
in the training PCNN.

4. EXPERIMENTAL RESULTS AND ANALYSIS
The experimental environment of proposed al-
gorithm is as follows: Windows 10 64-bit operat-
ing system, MATLAB R2018a, Caffe [16], CPU: 
Intel (R) Core (TM) i7-4770HQ 2.20GHz, RAM: 
16G, Intel (R) Iris (TM) Pro Graphics 5200.

In this paper, the peak signal-to-noise ratio 
(PSNR) is used to evaluate the denoising quality 
of depth map. The higher the PSNR, the better 
the denoising effect.

To illustrate the effectiveness of our algo-
rithm, we compared it with other typical denois-
ing algorithms, the SRCNN [14] and the PCNN 
on 6 depth maps of the Middlebury dataset, and 
the results were shown in table 1 and Fig. 2.

As can be seen from the results of Table and 
Fig. 2, the bilateral filter has more advantages 
than other traditional algorithms in the index 
of PSNR, while the algorithm proposed has the 
best PNSR value and the best subjective visual 
effect. This shows that the proposed denoising al-
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gorithm combining bilateral filter and the PCNN 
has a good effect on the denoising of depth maps. 

We also compared the proposed algorithm 
with the usual convolutional neural network (i.e. 
the SRCNN and the PCNN). Our results revealed 
that despite the SRCNN and the PCNN can also 
achieve a reasonable level of noise suppression 
with slightly insignificant lower time complex-
ity. But in the PSNR, they are still inferior to 
our proposed algorithm.

PSNR evaluation of different denoising methods (dB)

Method Art Moebius Books Laundry Dolls Reindeer

Gauss filter 33.29 31.17 31.44 32.13 31.56 31.06

Median filter 33.77 32.25 33.06 33.43 31.25 33.13

Mean filter 34.12 32.40 32.80 33.51 32.09 33.05

Bilateral filter 35.27 36.91 36.91 35.27 36.28 37.21

SRCNN 37.55 38.39 38.51 37.97 38.17 38.95

PCNN 38.21 39.52 39.67 38.81 39.04 40.19

Ours 39.79 40.68 41.15 39.52 40.71 41.34

 Ground truth  Gauss filter Median filter Mean filter 

 Bilateral filter SRCNN PCNN  Ours

(a) (b) (c) (d) 

(e) (f) (g) (h)

Fig. 2. Qualitative denoising performance comparisons on the Middlebury dataset.

5. CONCLUSION
In this paper, an algorithm is proposed to uti-
lize both bilateral filter and Progressive Convo-
lution Neural Network (PCNN) to denoise the 
depth maps. The bilateral filter’s capacity of re-
taining the image’s edge details while denoising 
depth map can be effectively combined with the 
PCNN’s excellent denoising performance by our 
algorithm. The effective denoising of the depth 
maps is conducive to automatically classifying 
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the depth maps and selecting the appropriate 
workflow for rapid 3D reconstruction of build-
ings. Moreover, the surface of the 3D model re-
constructed can be finer and the visual effect is 
better.

Of course, due to the hardware shortage of ToF 
camera, the depth maps collected not only have a 
lot of noise, but also have a lot of holes without 
depth information. How to effectively recover 
these missing depth data to improve the quality 
of depth maps is the focus of the follow-up work.
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