СВЕТОДИОДНЫЙ ШИРОКОДИАПАЗОННЫЙ СПЕКТРАЛЬНЫЙ ЭЛЛИПСОМЕТР С ПЕРЕКЛЮЧЕНИЕМ ОРТОГОНАЛЬНЫХ СОСТОЯНИЙ ПОЛЯРИЗАЦИИ

© 2016 г. В. И. Ковалёв, доктор техн. наук; А. И. Руковишников, канд. физ.-мат. наук; С. В. Ковалёв; В. В. Ковалёв, аспирант

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова Российской академии наук, г. Фрязино, Московская обл.

E-mail: ellipsometry@yandex.ru

Приведено описание светодиодного эллипсометра с непрерывным диапазоном длин волн 260–1000 нм и высокими техническими характеристиками. Воспроизводимость и стабильность измерений эллипсометрических параметров Ψ и Δ кремния с собственным диоксидом на пиковых длинах волн излучения светодиодов не хуже 0,001 и 0,01° соответственно. На длинах волн 365, 375, 390, 405, 420 и 465 нм воспроизводимость измерений Ψ и Δ пленок металлов около 0,0003 и 0,001° соответственно. Спектральное разрешение – 4 нм. Минимальное время измерения Ψ и Δ в полном диапазоне длин волн – 20 с.

Ключевые слова: светодиодный спектральный эллипсометр, переключение поляризации, ахроматический компенсатор, высокая чувствительность, стабильность измерений.

Коды OCIS: 120.2130

Поступила в редакцию 15.06.2015

Введение

Широкое использование спектральной эллипсометрии в различных областях науки и техники обуславливает важность задачи улучшения основных технических характеристик спектральных эллипсометров [1, 2]. Развитый автором этих работ метод эллипсометрии с бинарной модуляцией состояния поляризации (БМСП) имеет ряд преимуществ по сравнению с общепризнанными методами эллипсометрии с фазовой модуляцией и с вращающимся компенсатором [3-5]. Например, простой алгоритм эллипсометрических измерений с переключением ортогональных состояний поляризации при использовании импульсных ксеноновых ламп РХ-2 с большим рабочим ресурсом позволил выполнять высокоточные измерения дисперсии оптических констант диэлектрических покрытий в диапазоне 250-1050 нм [6]. Светодиодные источники импульсного или непрерывного излучения открывают широкие возможности упрощения и удешевления оптических приборов различного назначения при одновременном улучшении их технических характеристик [7, 8]. Современные разработки

интенсивных SMD¹ светодиодов малого размера с большим ресурсом работы и характерное для них высокое отношение сигнал/шум при измерении эллипсометрических параметров [9] объясняют интерес к созданию широкодиапазонного светодиодного спектрального эллипсометра (ССЭ). Известны прецизионные промышленные спектральные эллипсометры (FS-1, PHE101M) с использованием нескольких светодиодов с неперекрывающимися диапазонами длин волн.

Авторами настоящей статьи созданы ССЭ с непрерывным спектром, отличающиеся высокими чувствительностью и стабильностью при использовании метода эллипсометрии с БМСП. Описание многоканального ССЭ с диапазоном длин волн 350–810 нм приведено в публикации [10]. Сканирующий ССЭ для области спектра 270–900 нм представлен в работе [11].

С использованием более полного комплекта SMD светодиодов создан широкодиапазонный ССЭ (рис. 1) со сравнительно равномерным распределением интенсивности излучения в области длин волн от 260 до 1000 нм.

¹ Surface mounted device.

Рис. 1. Внешний вид светодиодного широкодиапазонного СЭ.

На рис. 2 приведена блок-схема ССЭ. Излучение светодиодов, расположенных на диске 2 шагового двигателя 1, линзой 3 фокусируется на щели 4. Сферическое зеркало 5 (фокусное расстояние F = 50 мм) направляет коллимированное излучение на дифракционную решетку 6. Сферическое зеркало 7 фокусирует излучение на круговой диафрагме 8 диаметром 0,4 мм. Сферическое зеркало 9 формирует пучок, расходимость которого контролируется автоколлиматором 26. Клин из кальцита 10 с углом при вершине 18° делит падающий на него пучок на пучки обыкновенных и необыкновенных лучей, которые фокусируются в плоскости симметрии сферическим зеркалом 11 с F = 60 мм. Идентичное зеркало 12 снова направляет пучки на клин, совмещающий пучки с первоначальным направлением. Электромагнитный переключатель 13 последовательно перекрывает сфокусированные

пучки с ортогональными азимутами поляризации. Элементы 11-13 составляют эффективный переключатель состояния поляризации. Электромагнитный переключатель 14 вводит в пучок асимметричный 4-х зеркальный компенсатор 15. Кварцевые линзы 16 и 17 с F = 50 мм вводятся в пучок при локальных измерениях. Наклон поверхности 19 образца 18 контролируется автоколлиматором 26. Отраженное от образца излучение делится призмой Волластона из α -BBO¹ на два ортогонально поляризованных пучка, которые зеркалами 21 и 23 направляются на фотоприемники 22 и 24. Устройство управления, регистрации и сопряжения 25 расположено в корпусе блока анализатора.

В табл. 1 приведены типы светодиодов, их пиковые длины волн и схема "сшивания".

Принцип действия ССЭ основан на переключении состояний поляризации, при этом на исследуемый образец попеременно направляются ортогонально поляризованные пучки с азимутами линейной поляризации P и $P + 90^{\circ}$ ($P \approx 30^{\circ}$). Левое плечо эллипсометра содержит призму Волластона, два сферических зеркала и два кремниевых фотодиода. При переключении азимутов P и $P + 90^{\circ}$ измеряется отношение сигналов на фотодиодах при азимутах разведенных призмой пучков A и $A + 90^{\circ}$ ($A \approx 10^{\circ}$). По измеренным отношениям определяются эллипсометрические параметры Ψ и Δ . В работе [5] приведены расчетные формулы, используемые в эллипсометрии с БМСП.

Калибровка ССЭ заключается в измерении спектров разности азимутов поляризатора *P*

¹ Альфа-борат бария.

Рис. 2. Блок-схема ССЭ. Пояснения в тексте.

Таблица 1. Набор	используемых	светодиодов
-------------------------	--------------	-------------

Название светодиода	Длина волны максимума, нм	Диапазон длин волн, нм	
UVTOP260 SMD	265	260-271	
UVTOP270 SMD	275	271-282	
UVTOP285 TO18 FW	290	282-299	
UVTOP305SMD	305	299-312	
UVTOP320 TO18 FW	320	312-327	
UVTOP335 TO18 FW	340	327-355	
UVLED365-SMD	365	358 - 370	
UVLED375E-SMD	375	370-382	
VL390-3228	390	382-400	
SMC405	405	400-410	
RLCU-415	420	410-430	
APG 2C3WW	белый	430 - 665	
SMC700	700	665 - 718	
SMC735	735	718-760	
SMC780	780	760-800	
SMC810	810	800-828	
SMC850	850	828-876	
SMC890	890	876-911	
SMC940	940	911-1000	

и анализатора A и включает спектры коэффициента, учитывающего поляризационную зависимость фотоприемников в положении плеч поляризатора и анализатора на одной оси. В этой же геометрии определяются спектры Δ и Ψ компенсатора. Измерения спектров Δ и Ψ на образцах Si с собственным термическим диоксидом SiO₂ при угле падения 70° позволяют определить действительные значения переключаемых в блоках поляризатора и анализатора и анализатора азимутов.

Тестовые измерения выполнены на эталонной кремниевой пластине (*Wafer Step* 0-500 *nm* фирмы *Ocean Optics*) с 5 пленками термического оксида различной толщины.

На рис. За приведены экспериментальные и расчетные спектральные зависимости Ψ и Δ пленок толщиной 205,7 нм (паспортное значение). Отклонение измеренных толщин от этого значения менее 0,4 нм. Наблюдается хорошее соответствие измеренных и расчетных зависимостей. На рис. Зб представлены аналогичные спектральные зависимости эталонного образца кремния с диоксидом толщиной 2,5 нм. Показательно, что даже на краю коротковолнового диапазона наблюдается высокая воспроизводимость измерения Δ и Ψ (рис. 4). Следовательно,

Рис. 3. Расчетные (сплошные линии) и измеренные спектральные зависимости Ψ (1) и Δ (2) эталонного образца термического диоксида кремния толщиной 205,7 (а) и 2,5 нм (б) на Si.

Рис. 4. Временны́е зависимости Ψ (1) и Δ (2) эталонного образца кремния с собственным диоксидом толщиной 2,5 нм, измеренные на длине волны 285 нм. Угол падения излучения на образец 70°.

светодиоды UVTOP с успехом заменяют недостаточно надежные и сравнительно дорогие ксеноновые лампы в большой части ультрафиолетового диапазона.

Преимуществами светодиодных широкодиапазонных эллипсометров с БМСП, основные технические характеристики которых приведе-

Таблица 2. Основные технические характеристики

Рабочий спектральный диапазон, нм	260-1000	Воспроизводимость и стабильность из- мерений Ψ*, град	не хуже 0,001
Спектральное разрешение, нм	4	Воспроизводимость и стабильность из- мерений ∆*, град	не хуже 0,01
Минимальное время измерения пол- ного спектра, с	20	Воспроизводимость измерений Ψ**, град	0,0003
Диаметр светового пучка, мм	3	Воспроизводимость измерений ∆**, град	0,001
с кварцевыми линзами, мкм	200		

Примечание. * эллипсометрических параметров кремния с собственным диоксидом на пиковых длинах волн излучения светодиодов. ** пленок металлов на длинах волн 365, 375, 390, 405, 420 и 465 нм.

ны в табл. 2, по сравнению с коммерческими СЭ с ламповыми источниками излучения являются более высокие отношение сигнал/шум и воспроизводимость при измерении эллипсометрических параметров, надежность и экономичность, возможность измерений с импульсным и непрерывным режимами питания светодиодов, кроме того, не требуется использование отсекающих дифракционные порядки фильтров.

Заключение

Использование набора из 19 светодиодных источников излучения невысокой мощности (стандартные токи 20 мА) в предложенной и развиваемой авторами эллипсометрии с переключением ортогональных состояний поляризации обеспечило достаточно высокие технические характеристики созданного сканирующего широкодиапазонного спектрального эллипсометра. Имеются очевидные возможности дальнейшего улучшения технических характеристик ССЭ. Наблюдаемый прорыв в области технологий изготовления светодиодных источников излучения малого размера позволит в ближайшем будущем существенно улучшить основные технические параметры светодиодных эллипсометров, увеличить скорость и пространственное разрешение измерений Ψ и Δ . Высокая чувствительность светодиодных эллипсометров при невысокой стоимости позволит существенно расширить области их применения в магнитооптических исследованиях, в локальных кинетических исследованиях процессов образования монослоев на поверхности жидких и твердых сред и в сенсорных устройствах.

* * * * *

ЛИТЕРАТУРА

- 1. Fujiwara H. Spectroscopic Ellipsometry: Principles and Applications. N.Y.: Wiley, 2007. 392 p.
- Aspnes D.E. Spectroscopic ellipsometry Past, present, and future. Review // Thin Solid Films. 2014. V. 571. № 3. P. 334-344.
- 3. *Ковалев В.И.* Методы и приборы лазерной и спектральной эллипсометрии с бинарной модуляцией состояния поляризации // Автореф. докт. дис. Фрязино: ИРЭ РАН, 2011. 34 с.
- 4. Azzam R.M.A. Polarization Michelson interferometer (POLMINT): Its use for polarization modulation and temporal pulse shearing // Opt. Commun. 1993. V. 98. № 1. P. 19–23.
- 5. *Ковалев В.И., Руковишников А.И., Перов П.И., Россуканый Н.М., Авдеева Л.А.* Разработка оптических методов и аппаратуры для контроля технологии и параметров полупроводниковых структур нано- и микроэлектроники // Радиотехника и электроника. 1999. Т. 44. № 11. С. 1404–1407.
- Leontyev A.V., Kovalev V.I., Khomich A.V., Komarov F.F., Grigoryev V.V., Kamishan A.S. PMMA and polystyrene films modification under ion implantation studied by spectroscopic ellipsometry // Proc. SPIE. 2004. V. 5401. P. 129–136.
- 7. de Lima K.M.G. A portable photometer based on LED for the determination of aromatic hydrocarbons in water // Microchemical Journal. 2012. V. 103. P. 62–67.
- 8. Obeidat S., Bai B., Rayson G.D., Anderson D.M., Puscheck A.D., Landau S., Glasser T. A multi-source portable light emitting diode spectrofluorometer // Appl. Spectr. 2008. V. 62. № 3. P. 327–332.

- 9. Callegaro L., Puppin E. Lasers and light-emitting diodes as sources for fixed-wavelength magneto-optical phase modulated ellipsometry // Rev. Sci. Instrum. 1995. V. 66. № 11. P. 5375–5376.
- Kovalev V.I., Rukovishnikov A.I., Kovalev S.V., Kovalev V.V. An LED multichannel spectral ellipsometer with binary modulation of the polarization state // Instruments and Experimental Techniques. 2014. V. 57. № 5. P. 607-610.
- 11. Ковалев С.В., Руковишников А.И., Ковалев В.И. Светодиодный спектральный эллипсометр с бинарной модуляцией состояния поляризации // III Всерос. молодежная конф. "Функциональные материалы и высокочистые вещества". Сб. материалов. М., 2012. С. 319–320.
- 12. Kovalev V.I., Ali M., Kovalev S.V., Kovalev V.V. Possibilities of achromatization of coaxial asymmetric phase shifters with an even number of reflections // Opt. and Spectr. 2014. V. 117. № 1. P. 118–120.