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Введение

За последнее время значительно вырос инте-
рес к возможности детектирования и визуа-
лизации излучения в терагерцовом (ТГ) диа-
пазоне (0,3–10 ТГц) для систем безопасности, в 
биологических, медицинских и других целях. 
В значительной степени это обусловлено тремя 
факторами.

1. Неметаллические и неполярные материалы 
прозрачны для ТГ излучения, что позволяет опе-
ративно выявлять потенциально опасные веще-
ства через скрывающую одежду, обувь, багажные 
сумки, пластиковые и картонные упаковки.

2. Материалы, важные с точки зрения без-
опасности, имеют характерные спектры про-
пускания и отражения в ТГ диапазоне, что дает 
возможность проводить их идентификацию с 
высокой степенью достоверности.

3. ТГ излучение малой интенсивности не пред-
ставляет угрозу для здоровья живых организмов, 
что позволяет их сканирование без нанесения 
вреда.

Технология регистрации изображения хоро-
шо разработана как в инфракрасном (ИК), так и 
миллиметровом диапазонах длин волн. Однако 
в ИК диапазоне большинство актуальных мате-
риалов непрозрачны, а в миллиметровом диапа-
зоне длин волн у них отсутствуют характерные 
спектры пропускания и отражения, что затруд-
няет идентификацию этих веществ. Кроме того, 
системы визуализации в миллиметровом диапа-
зоне работают на существенно больших длинах 
волн, что заметно ухудшает пространственное 
разрешение. Расширение спектральной области 
чувствительности в ТГ диапазон имеет большое 
значение также в радиоастрономии, физике 
плазмы и для исследования атмосферы. 

В настоящее время наиболее чувствитель-
ными приемниками ТГ излучения являются 
криогенные сверхпроводниковые болометры ан-
тенного типа [1]. Их пороговая мощность, приве-
денная на 1 Гц полосы частот измерения, – мощ-
ность эквивалентная шуму (NEP)1 – достигает 
9×10–12 Вт/Гц1/2 при азотных температурах [2], 
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1,4×10–14 Вт/Гц1/2 при гелиевых температурах 
[3] и 3×10–17 Вт/Гц1/2 при температуре порядка 
0,1 К [4]. Такие приемники, обычно одиночные 
или в виде небольших массивов, используются 
для детектирования малых сигналов, например, 
в радиоастрономии и в системах обнаружения, 
использующих пассивное ТГ излучение, ис-
пускаемое самим объектом или отражаемое им 
излучение окружающего фона. В системах с ак-
тивной подсветкой, использующих мощные ТГ 
излучатели (такие как квантовые каскадные ла-
зеры [5] и лазеры на свободных электронах [6]), 
столь высокая чувствительность не требуется 
и актуальными становятся высокое простран-
ственное разрешение, скорость визуализации 
изображения и удобство использования прием-
ников. Для решения этих задач могут быть ис-
пользованы матричные микроболометрические 
приемники (ММБП) большого формата, чувстви-
тельность которых к ТГ диапазону была проде-
монстрирована в работах [7, 8]. Целью настоящей 
работы является разработка и исследование 
неохлаждаемых ММБП для ИК и ТГ диапазонов 
как антенного типа, так и без антенн. 

Матричные микроболометрические 
приемники без антенн

ММБП представляет собой массив фоточув-
ствительных микроболометров мостикового 
типа [9], состоящих из термочувствительного 
сопротивления, подвешенного на слабо тепло-
проводящих несущих балках (“ножках”) над 
подложкой, на которой может быть изготовлено 
считывающее устройство (например мульти-
плексор). На подложке под болометром для уве-
личения поглощения ИК излучения наносится 
зеркало, зазор между которым и болометром 
составляет четверть длины волны середины рабо-
чего диапазона. Этот вариант является наиболее 
оптимальным, поскольку позволяет использо-
вать преимущества интегрального исполнения 
чувствительных элементов и схемы обработки 
сигналов на одном кремниевом кристалле, а 
также получить высокий коэффициент запол-
нения площади приемника чувствительными 
элементами. В качестве терморезистивного 
материала в неохлаждаемых микроболометрах 
преимущественно используются оксиды ванадия 
[10] и аморфный кремний [11]. Далее нас будут 
интересовать микроболометры на основе оксидов 
ванадия, в которых термочувствительное сопро-
тивление в виде тонкого слоя заключено между 
двумя слоями нитрида кремния, являющимися 

несущим материалом. В таких приемниках 
поглощение ИК и ТГ излучения происходит 
непосредственно в конструктивных элементах 
микроболометра. В частности, в ИК диапазоне 
поглощение происходит в слоях нитрида крем-
ния и обусловлено Si–N-связями, что задает 
область спектральной чувствительности ММБП 
интервалом 8–14 мкм [12]. Отмеченная в работах 
[7, 8] чувствительность таких микроболометров 
в ТГ диапазоне, по нашим данным, обусловлена 
поглощением излучения в слоях оксида ванадия. 
На рис. 1 приведены спектры пропускания слоев 
оксида ванадия и нитрида кремния, выращен-
ных на сапфировой подложке толщиной 0,2 мм. 
Половина каждой подложки оставалась не по-
крытой слоем и использовалась при нормировке 
коэффициентов пропускания. Видно, что слой 
оксида ванадия в диапазоне волн 30–200 мкм 
поглощает около 10% ТГ излучения, а в слое 
нитрида кремния поглощения не происходит. 

Технологический маршрут изготовления 
ММБП состоит из следующих операций. 

1. Слой алюминия для контактов. Нанесение 
производится на установке магнетронного рас-
пыления. Формируются контактные площадки 
микроболометров к кремниевой схеме считыва-
ния. Толщина металла 0,6 мкм.

2. Слой алюминия для зеркала. Нанесение 
производится на установке магнетронного рас-
пыления. Формируются зеркала, в дальнейшем 
служащие для изготовления оптических резона-
торов, расположенных под микроболометрами 
и увеличивающих поглощение ИК излучения 
приемником. Толщина металла 0,1 мкм. 

Указанные первые два этапа маршрута явля-
лись дополнительными к стандартному техноло-
гическому маршруту изготовления кремниевой 
схемы считывания и выполнялись в ОАО “Анг-
стрем” (Москва). 

3. Жертвенный слой. Производится нанесение 
полиимида методом центрифугирования, его 
предварительная сушка, формируются ворон-
кообразные окна до алюминиевых контактных 
площадок, после чего проводится имидизация 
полиимида. Толщина жертвенного слоя 2,5 мкм.

4. Нижний слой нитрида кремния. Исполь-
зуется метод плазмохимического нанесения в 
реакторе с индукционно-связанной плазмой. 
Толщина пленки составляет 150 нм. Прово-
дится плазмохимическое травление окон в слое 
нитрида кремния до алюминиевых контактных 
площадок. 

5. Пленка нихрома. Магнетронным распыле-
нием формируются нихромовые шины, идущие 
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по нитридкремниевой “ножке” микроболометра, 
и контакты к оксиду ванадия. Толщина плен-
ки 50 нм. 

6. Оксид ванадия. Термочувствительные 
слои получали методами золь-гель технологии, 
используя при этом раствор изопропоксида ва-
надила в изопропиловом спирте. Для получения 
слоев оксида ванадия требуемого состава сначала 
получали слои высшего окисла ванадия V2O5 . За-
тем, чтобы получить слои с меньшим содержани-
ем кислорода, в том числе VOx с x ≈ 2, проводился 
отжиг в восстановительных средах. 

7. Верхний слой нитрида кремния полностью 
аналогичен нижнему слою нитрида кремния. Пу-
тем плазмохимического травления формируется 
нитридкремниевый мостик. 

8. Удаление жертвенного слоя. Полиимид 
удаляется в кислородной плазме после пред-
варительного разрезания пластины кремния на 
отдельные чипы.

Образцы неохлаждаемых фотоприемных 
устройств на основе ММБП

В качестве схемы считывания использовались 
мультиплексоры формата 320×240 и 160×120, 
разработанные совместно ОАО “Ангстрем” и ОАО 
ЦНИИ “Циклон” (Москва). Считывание сигна-
лов с элементов ММБП, работающих в режиме 
импульсного смещения, организовано построчно 
с использованием 320 (или 160 для меньшего 
формата) мостовых схем Уинстона. Одно плечо 
мостов построено из выбранной строки матрицы 
чувствительных микроболометров и вынесенной 
за пределы матрицы строки “термически закоро-
ченных” болометров, т. е. выполненных без ваку-
умного зазора; другое плечо – из микроболометра 
дополнительного столбца чувствительных, но 
затененных от ИК излучения микроболометров 
и одного “термически закороченного” болометра. 
Такая схема включения обеспечивает сохране-
ние баланса моста даже при значительном 
разогреве чувствительных элементов матрицы 
в процессе считывания сигнала. Кроме того, 
она мало чувствительна к шумам напряжения 
смещения моста и сопротивлению болометров. 
Предусмотрена также балансировка входных 
напряжений 320 (или 160) дифференциальных 
интегри рующих усилителей внешним напряже-
нием, единым для всех усилителей.

Микроболометрический приемник имел шаг 
матрицы 51×51 мкм, фактор заполнения 0,55. 
Ширина несущей “ножки” составляла 1,6–
2,0 мкм. Экранирование от ИК излучения до-

полнительного столбца чувствительных микро-
болометров осуществлялось П-образной балкой, 
изготовленной из легированного кремния и 
приклеенной к кристаллу с мультиплексором 
вакуумным эпоксидным клеем. После пред-
варительной отбраковки ММБП и сортировки 
по качеству было изготовлено и исследовано 
несколько матричных микроболометрических 
(ММБ) фотоприемных устройств (ФПУ) форма-
том 320×240 и 160×120, в том числе с разностью 
температур, эквивалентной шуму (NETD)2 менее 
100 мК при угле зрения 60°. На рис. 2 приведена 
типичная гистограмма распределения NETD по 
элементам ММБ ФПУ форматом 320×240. ФПУ 
состоят из малогабаритного вакуумного корпу-
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Рис. 2. Гистограмма распределения NETD по 
элементам ММБ ФПУ формата 320х240 при 
угле зрения 60°. 

Рис. 1. Спектры пропускания слоев оксида ва-
надия толщиной 100 нм (1) и нитрида кремния 
толщиной 300 нм (2), выращенных на сапфиро-
вой подложке.

2 NETD – noise equivalent temperature difference.
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са, снабженного просветленным германиевым 
окном, геттера, термоэлектрического охладите-
ля и транзисторного датчика температуры для 
стабилизации рабочей температуры ММБП. 
Использовались также окна из высокоомного 
кремния, обладающие большим пропусканием в 
ТГ диапазоне. Вакуумный корпус, снабженный 
медным штенгелем и 35 металлостеклянными 
токовыводами, изготавливался из ковара ваку-
умной индукционной плавки 29НК-ВИ. После 
откачки и обезгаживания корпуса проводилась 
активация геттера, после чего штенгель вакуум-
но-плотно пережимался. Используемый геттер 
активировался прогревом путем пропускания 
через него электрического тока и допускал 
повторную многократную активацию, что по-
зволяет продлить срок службы ФПУ. Термоэле-
ктрический охладитель размерами 20×20×3,5 мм 
имел максимальную хладопроизводительность 
2,7 Вт при температуре “горячей стороны” 
50 °С и позволял при потребляемой мощности, 
не превышающей 2 Вт, поддерживать рабочую 
температуру ММБП 20 °С при изменении темпе-
ратуры окружающей среды от –50 °С до +50 °С. 
Вес ФПУ 50 г. 

Температурные чувствительности ST исследо-
ванных ММБ ФПУ, измеренные при изменении 
температуры протяженного абсолютно черно-
го тела (АЧТ) от 25 °С до 35 °С и напряжении 
смещения чувствительного микроболометра 
VB = 2 В, имеют достаточно узкие гистограммы 
распределения по элементам ММБП со средними 
значениями TS = 3–6 мВ/К, изменяющимися 
от образца к образцу. Типичное значение шума 
выходного напряжения каждого чувствитель-
ного элемента ММБП, измеренного по 64 после-
довательным кадрам, Vout = 0,4 мВ. Количество 
дефектных элементов, т. е. имеющих NETD 
вдвое большую средней, составляло от 3 до 5%. 
Пороговая мощность в ИК диапазоне, найденная 
по соотношению 

2
th,IR NETD / / 4 1( ) ( ),P dP dT A F= +

          
(1)

составляла 1,6×10–10 Вт/пиксел. Здесь dP/dT – 
изменение мощности излучения единицы по-
верхности АЧТ в рабочем диапазоне длин волн 
8–14 мкм при изменении его температуры T на 
один градус, A – площадь пиксела микроболоме-
трической матрицы, F – относительное отверстие 
АЧТ. Теплопроводность микроболометров, из-
меренная по методике [13] на тестовых микро-
болометрах, расположенных на краю кристалла 
ММБП, составила примерно  1×10–7 Вт/К. Время 
тепловой релаксации τ0, измеренное по методи-

кам [13, 14] , составляло 12–16 мс. Среднеквадра-
тическое отклонение относительного сопротив-
ления болометров по массиву матрицы [14] для 
различных ФПУ равно 2–4%. На рис. 3 приведен 
пример теплового изображения, полученного с 
помощью изготовленного ММБ ФПУ форматом 
320×240 и германиевого объектива с F = 1. 

Измерение чувствительности ММБП 
в терагерцовом диапазоне

Экспериментально чувствительность ММБ 
ФПУ в ТГ диапазоне измеряли путем сопостав-
ления интенсивности падающего излучения и 
сигнала ММБП. Использовали излучение ла-
зера на свободных электронах с длиной волны 
λ = 130 мкм [6]. Лазер генерирует непрерывную 
последовательность импульсов длительностью 
около 50 пс, следующих с частотой 5,6 МГц. От-
носительная ширина спектральной линии около 
0,3%. Длина волны излучения могла плавно 
перестраиваться от 120 до 235 мкм. Поскольку 
распределение интенсивности излучения, пада-
ющего на ФПУ (непосредственно перед вход-
ным окном), и распределение интенсивности в 
плоскости матрицы микроболометров, вообще 
говоря, различны (например, вследствие интер-
ференции на окне и разного пространственного 
положения окна и матрицы), то необходимо 
 использовать интегральные величины интенсив-
ности падающего излучения и сигнала ММБП. 
Для этой цели излучение фокусировалось в пят-
но меньше размера матрицы чувствительных 
микроболометров и сначала одиночным прием-

Рис. 3. Тепловое изображение, полученное с 
использованием неохлаждаемого ММБ ФПУ 
форматом 320×240, работающего на частоте 
50 Гц, и германиевого объектива с относитель-
ным отверстием 1:1.
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ником определяли его относительное распределе-
ние по координатам. Затем термочувствитель-
ным интерферометром [15] на основе плоскопа-
раллельной пластинки из стекла К8 проводили 
абсолютное измерение интенсивности в макси-
муме распределения Imax. Плоский волновой 
фронт видимого излучения полупроводникового 
лазера (длина волны 665 нм) отражался от двух 
поверхностей пластинки и формировал на экране 
интерференционную картину, которая записы-
валась цифровой видеокамерой. Измеряемое 
ТГ излучение нагревало тонкий поверхностный 
слой пластинки, что приводило к изменению 
ее показателя преломления и толщины и, как 
следствие, к сдвигу интерференционных полос. 
Для стекла К8 сдвиг на одну полосу соответствует 
5,1 Дж/см2 поглощенной энергии. Измеряя вре-
мя между двумя минимумами или максимумами 
и учитывая коэффициент отражения от пласти-
ны, равный 0,16, можно определить мощность 
падающего излучения. Время между двумя 
соседними максимумами интерференционной 
картины составляло около 1 c, что достаточно 
мало и позволяет пренебречь как охлаждением 
пластины воздухом, так и перераспределением 
тепла вдоль поверхности пластины за счет те-
плопроводности. В результате измеренная нами 
интегральная интенсивность излучения Iint у 
окна приемника составила 9,8 Вт. 

При измерении сигнала ММБП US падающее 
излучение ослаблялось поляризатором в 50 раз, 
а для повышения динамического диапазона 
ММБП напряжение смещения микроболометров 
VB уменьшалось с 2 до 1 В, что вдвое понижало 
его чувствительность и разброс темновых зна-
чений выходного напряжения Vout. Суммируя 
значения сигнала по всем пикселам, находили 
его интегральное значение US, int, которое соста-
вило 3×106 мВ. При этом абсолютная средняя 
чувствительность ММБП при VB = 1 В составила 
S = US,int /Iint = 3×106/(9,8/50) ≈ 1,5×104 В/Вт. 
Учитывая, что среднеквадратическое значение 
шума ММБП не зависит от типа регистрируемо-
го излучения и составляло Un ≈ 0,5 мВ, находим 
пороговую мощность Pth, THz = Un/S, которая 
оказывается равной 3,3×10–8 Вт/пиксел. Учи-
тывая, что интегрирование сигнала схемой 
считывания проводилось в течение времени 
τi = 20 мкс и, следовательно, средний шум на 
1 Гц полосы частот 2nf n iU U τ=  составлял 
3×10–6 В/Гц1/2, найдем мощность, эквивалентную 
шуму, THzNEP /nfU S==  2×10–10 Вт/Гц1/2.

Теоретически пороговую мощность в ТГ 
диапазоне Pth, THz можно оценить по известной 

пороговой мощности для ИК диапазона Pth,IR пу-
тем сопоставления коэффициентов поглощения 
из лучения в болометре и коэффициентов пропу-
скания окон для двух этих диапазонов:

2
IRIR

th,THz th,IR
THz THz

2
2 2,

,
.W

W
P P d

τη π
η τ λ

−⎛ ⎞⎟⎜≈ ⎟⎜ ⎟⎜⎝ ⎠
      

(2)

Здесь ηIR и ηTHz – коэффициенты поглощения 
излучения в ИК и ТГ диапазонах, принимае-
мые равными 0,5 и 0,1 соответственно; τW, IR и 
τW, THz – коэффициенты пропускания просвет-
ленного для ИК диапазона германиевого окна в 
ИК и ТГ областях, равные 1 и 0,2 соответствен-
но; d – толщина зазора между болометром и 
зеркалом, равная 2,5 мкм; λ – длина волны ТГ 
излучения, на которой проводилось измерение 
чувствительности ММБП. Коэффициент 2 в 
начале выражения (2) и последний множитель 
учитывают соответственно вдвое пониженное 
напряжение смещения болометра при работе 

(а)

(б)

Рис. 4. Изображения скрытых объектов в 
режиме на просвет (а) и на отражение (б), по-
лученные с использованием неохлаждаемого 
ММБ ФПУ форматом 160×120, работающего на 
частоте 90 Гц, и излучения лазера на свободных 
электронах. а – гайка М8, закрытая листом ви-
нипласта толщиной 2 мм, б – гайка М8, закры-
тая листом писчей бумаги.
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с ТГ излучением и уменьшение поглощения 
ТГ излучения в оксиде ванадия, обусловленное 
тем, что оно происходит вблизи узла стоячей 
волны, образующейся при отражении падаю-
щего излучения от зеркала, расположенного 
под болометром. Используя вышеуказанные 
значения и Pth, IR = 1,6×10–10 Вт/пиксел, по-
лучим пороговую мощность в ТГ диапазоне 
Pth, THz = 3,4×10–8 Вт/пиксел, практически со-
впадающую с экспериментальным значением.

Визуализация объектов в ТГ диапазоне прово-
дилась с помощью ММБ ФПУ форматом 160×120 
элементов на длине волны 130 мкм при исполь-
зовании излучения лазера на свободных электро-
нах, ослабленного поляризатором. В качестве 
объектива использовали полиэтиленовые и 
фторопластовые линзы. Максимальная скорость 
передачи изображения в персональный компью-
тер составила 90 кадр/с. На рис. 4 приведены 
примеры изображений, полученных в режиме 
на просвет и на отражение. Отношение сиг-
нал/шум составляло 300 и более.

ММБП антенного типа

В сверхпроводящих болометрах антенного 
типа нагрузкой для антенны является сам микро-
болометр, имеющий сопротивление, согласо-
ванное с импедансом антенны, который по по-
рядку величины равен 100 Ом. Неохлаждаемые 
болометры на основе оксидов ванадия имеют 
сопротивление порядка 100 кОм, что представ-
ляет определенную трудность для согласования 
антенны с нагрузкой и требует нового кон-
структивного решения. В нашей конструкции 
нагрузкой для антенны является не сам термо-
чувствительный элемент микроболометра, а 
узкая металлическая полоска, нанесенная на 
верхний слой нитрида кремния между контак-
тами к слою оксида ванадия и, следовательно, 
имеющая хороший тепловой контакт с микро-
болометром, но электрически изолированная 
от термочувствительного слоя. Длина полоски 
70 мкм, ширина 2 мкм и толщина 200 нм, сопро-
тивление – порядка 100 Ом. Антенна выполнена 
из хорошо проводящего металла и подвешена 
над кремниевой схемой считывания на высоте 
2,5 мкм (толщина вытравленного жертвенного 
слоя из полиимида) с помощью растяжек из ни-
трида кремния (см. рис. 5). Такая конструкция в 
интегральном исполнении при размерах антенн 
250×250 мкм позволяет изготовить на крем-
ниевом кристалле размером 20×20 мм матрицу 
чувствительных элементов форматом до 64×48 

элементов, предназначенную для регистрации 
изображения в ТГ диапазоне. 

В качестве схемы считывания использовали 
тот же мультиплексор форматом 160×120, что и 
для неохлаждаемого ММБП без антенн. Для того 
чтобы максимально исключить разброс и невос-
производимость параметров микроболометров 
и уверенно сравнивать эффективность работы 
приемников с антеннами и без антенн, на одном 
кремниевом кристалле располагались массивы 
микроболометров с “квазиспиральными” антен-
нами размером 150×150 и 250×250 мкм, а также 
болометры без антенн. Измерения показали, 
что на длине волны 130 мкм чувствительность 
болометрических приемников с антеннами обоих 
размеров в 4–6 раз выше, чем болометрических 
приемников без антенн. Тем самым продемон-
стрирована принципиальная работоспособность 
предложенной конструкции неохлаждаемых 
высокоомных микроболометров антенного типа. 
Дальнейший путь увеличения чувствительности 
состоит в оптимизации конструкции микроболо-
метра и антенны. 

Выводы

Разработаны и изготовлены неохлаждаемые 
матричные микроболометрические приемники 
для инфракрасного и терагерцового диапазонов. 
Для приемников форматом 320×240 элементов 
в диапазоне 8–14 мкм получены температурное 

Рис. 5. Фрагмент неохлаждаемого матричного 
болометрического приемника с антенной, под-
вешенной на растяжках из нитрида кремния. 
Размер пиксела 250×250 мкм. Снимок сделан с 
помощью сканирующего электронного микро-
скопа.
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разрешение менее 100 мК и пороговая мощность 
160 пВт/пиксел при времени отклика 12–16 мс. 
Показана чувствительность микроболометриче-
ских приемников на основе диоксида ванадия к 
излучению терагерцового диапазона. Пороговая 
мощность на длине волны 130 мкм составила 
33 нВт/пиксел. Разработанная конструкция 
сопряжения антенны с неохлаждаемым вы-
сокоомным микроболометром интегрального 
исполнения позволяет значительно увеличить 
чувствительность приемника.
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