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Введение

Обязательным этапом автоматизации дешиф-
рирования является создание его математиче-
ской модели. К сожалению, несмотря на несо-
мненные успехи, достигнутые в распознавании 
печатных символов и идентификации людей по 
папиллярным узорам, достаточно общей теории 
дешифрирования изображений, необходимой 
для его автоматизации, пока построить не уда-
лось. Настоящая работа касается частного, но 
распространенного случая, когда дешифрирова-
ние проводится с целью выявления (обнаруже-
ния) на сцене заданных объектов. 

Понятно, что выявляемые объекты должны 
обладать характерными свойствами (признака-
ми), позволяющими отличать их от других объ-
ектов сцены. Также очевидно, что эти признаки, 
хотя бы частично, должны присутствовать на 
изображениях. Однако измеряемые в процессе 
съемки энергетические яркости пикселов очень 
изменчивы. Они зависят от времени суток, се-
зона, метеопараметров и других трудно контро-
лируемых условий съемки. Гораздо устойчивее 
ведут себя геометрические признаки (форма, 
площадь, габаритные размеры). Именно с этим 
свойством связано их широкое применение в 
дешифрировании изображений. К сожалению, 
геометрические признаки не регистрируются в 

ходе съемки, а вычисляются по проекциям объ-
ектов на этапе дешифрирования. Поэтому по-
строение проекций заданных объектов является 
обязательным этапом дешифрирования.

Важная особенность рассматриваемого под-
хода к выявлению на сцене заданных объектов 
заключается в том, что эту задачу предлагает-
ся заменить тремя более простыми задачами. 
Вначале изображения сцены используются для 
поиска на ней участков, содержащих задан-
ный объект и его некоторое окружение. Такие 
участки названы зонами интереса. Затем про-
водится сегментация выявленных зон интереса, 
состоящих из пикселов объекта и его окружения 
(фона). Целесообразность введения понятия 
зоны интереса оправдывается двумя соображения-
ми. Во-первых, сегментировать приходится только 
выявленные зоны интереса. Если частота обнару-
жения ложной зоны невелика, то их общая пло-
щадь оказывается во много раз меньше площади 
всей сцены. Во-вторых, естественно полагать, что 
качество сегментации зоны интереса, содержащей 
пикселы только двух видов, окажется значительно 
выше качества сегментации всей сцены. Коорди-
наты пикселов, образующих объект, называются 
далее его проекцией. На завершающем этапе 
проекции используются для вычисления геоме-
трических признаков и принятия окончательного 
решения о наличии объекта в зоне интереса. 
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Очевидно, что состав признаков, которые 
можно вычислять по изображениям, опреде-
ляется выбранной математической моделью 
сцены. Стремление к получению более полной 
информации о сцене может привести к использо-
ванию моделей, построенных на непроверенных 
предположениях. При решении прикладных 
задач такие предположения нередко приводят к 
неверным выводам. В настоящей работе приво-
дятся результаты теоретических и эксперимен-
тальных исследований влияния на результат по-
иска заданных объектов разных моделей сцены. 
Из-за ограниченного объема статьи рассматри-
вается только задача сегментации зон интереса. 
В качестве исходной информации о сцене исполь-
зуется набор пространственно совмещенных и 
одновременно сформированных изображений. 

Модели сцены

Будем рассматривать сцену как совокуп-
ность неделимых элементов, называемых далее 
пикселами. Предположим вначале, что в каж-
дом пикселе измеряется только один признак. 
В этом случае пиксел характеризуется целочис-
ленными координатами z = (z1, z2), заданными 
на двумерной целочисленной решетке Z2 =
= {z = (z1, z2):z1 ∈ Z, z2 ∈ Z)}, и скалярной случай-
ной величиной ξz со значениями из конечного 
множества Y, состоящего из |Y| > 1 элементов. 
Предполагается, что Y = {0, 1, …, |Y| – 1} и что слу-
чайные величины определены на одном и том же 
вероятностном пространстве (Ω, Α, P). Очевидно, 
что в качестве Ω можно рассматривать счетное 
множество YZ2

 всех отображений вида Z2 → Y, 
а в качестве σ-алгебры – Α – счетное семейство 
всех подмножеств множества YZ2

. Семейство вида 
(ξz)z ∈ Z2 будет называться далее скалярной сце-
ной. Пусть ω ∈ Ω, z ∈ Z2 и xz = ξz(ω). Отображение 
x:Z2 → Y, определяемое равенством x(z) = xz, 
z ∈ Z2 и обозначаемое x = (xz)z ∈ Z2, назовем ска-
лярным изображением сцены. 

При решении прикладных задач интерес 
представляют конечные подмножества пиксе-
лов, которые будут называться объектами. Фор-
мально каждый объект определяется подмноже-
ством A точек из Z2, содержащим координаты 
его пикселов, и семейством ξA = (ξa)a ∈ A из |A| 
скалярных случайных величин. Далее A будет 
называться проекцией объекта. Если A и B – про-
екции разных объектов, то предполагается, что 
они не пересекаются. Изображением объекта ξA 
будет называться сужение xA = (xa)a ∈ A изображе-
ния x всей сцены на A.

Пусть YA = {xA = (xa)a ∈ A:xa ∈ Y, a ∈ A} – мно-
жество различных изображений объекта ξA, 
тогда его свойства определяются распределением 
вероятностей AY

P = ( ( ))A A
A

AY x Y
p x

∈
 на YA. Если 

на Z2 задано разбиение, состоящее из конечных 
попарно непересекающихся подмножеств, на-
зываемых проекция ми объектов сцены, и если 
каждой проекции A поставлено в соответствие 
распределение вероятностей AY

P  
 
на YA, то суще-

ствует [1] вероятностное пространство (Ω, A, P) и 
скалярная сцена 2( )

Z
ξ

∈z z  на Z2 такая, что

P{ω ∈ Ω:ξA(ω) = xA} = pYA(xA)

для любой проекции A и для любого xA ∈ YA. 
Кроме того, если A и B – проекции разных эле-
ментов сцены, то для любых a ∈ A и b ∈ B случай-
ные величины ξa и ξb независимы. 

В общем случае число одновременно измеряе-
мых признаков  ν ≥ 1. Поэтому в качестве пиксела 
с координатами z ∈ Z2 естественно рассматривать 
ν-мерную случайную величину ξz = (ξj

z)1 ≤ j ≤ ν, опре-
деленную на (Ω, Α, P) и принимающую значения в 
Y = Yν, а семейство (ξz)z ∈ Z2 – называть векторной 
сценой. Пусть ω ∈ Ω, тогда ( )j jx ξ ω=z z , z ∈ Z2, будет 
называться j-м скалярным изображением пиксе-
ла ξz, а 2( )j j

Z
x x

∈
= z z

– j-м скалярным изображе-
нием векторной сцены, 1 j ν≤ ≤ . Изображением 
векторной сцены (или векторным изображением) 
назовем семейство 1( )j jx ν≤ ≤=x

 
ее скалярных изо-

бражений. Если xz = 1( )j jx ν≤ ≤z – векторное изобра-
жение пикселa, то изображение векторной сцены 
принимает вид x = (xz)z ∈ Z2. 

Объектом с проекцией A в общем случае будет 
совокупность векторных случайных величин 
ξA = (ξa)a ∈ A, а его изображением – совокупность 
векторов xA = (xa)a ∈ A. Очевидно, что изображе-
ния объекта образуют множество

1{ ( ) : ( ) , }A j
A A jx Aν∈ ≤ ≤= = = ∈a a a aY x x x a .

Распределением объекта ξA назовем распре-
деление ( ( ))A A A

A
AP p

∈
=

Y Y x Y
x  на множестве YA 

всех векторных изображений, определяемое ра-
венством ( )A Ap

Y
x = P{ω ∈ Ω: ξA(ω) = xA}. Пусть на 

Z2 задано разбиение на проекции и пусть каждой 
проекции A поставлено в соответствие распреде-
ление вероятностей AP

Y
на множестве YA. Тогда 

существует вероятностное пространство (Ω, Α, P)  
и векторная сцена (ξz)z ∈ Z2 такая, что

P{ω ∈ Ω:ξA(ω) = xA} = pYA(ξA)

для любой проекции A и любого A
A ∈x Y . Кроме 

того, если A и B – проекции разных элементов 
сцены, то для любых a ∈ A  и b ∈ B векторные 
случайные величины ξa и ξb независимы. 
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В ходе дешифрирования признаки объектов 
вычисляются по изображениям сцены. Пусть 
d – евклидово расстояние на Z2, а B(z, r) =
= {t ∈ Z2:d(z, t) ≤ r} – круг с центром z и радиу-
сом r. Довольно часто в качестве признака объ-
екта скалярной сцены используется среднее 
арифметическое значение x–z, определяемое 
равенством 

x–z =
1

( , )| ( , ) | B r

x
B r ∈

∑ t
t zz .

В общем случае x–z не имеет полезной содер-
жательной интерпретации. Однако в частном 
случае, если объект Aξ  со средним значением 

Am  является фрагментом изотропного случай-
ного поля, для которого выполняются условия 
эргодической теоремы Слуцкого, то x–z является 
состоятельной оценкой неизвестного среднего 
значения Am  [2]. Пусть R – корреляционная 
функция изотропного случайного поля со сред-
ним значением Am . Хорошо известно [2], что для 
сходимости xz  к Am  по вероятности достаточно, 
чтобы 0( )R t →  при t→+∞. Это условие часто ис-
пользуется в приложениях.

В связи с изложенным будем называть далее 
скалярную сцену локально изотропной, если 
ее объекты являются фрагментами скалярных 
изотропных случайных полей, позволяющих 
оценивать по изображению объекта его среднее 
значение. Очевидно, что векторная сцена (ξz)z ∈ Z2 
является набором из ν  скалярных сцен (ξj

z)z ∈ Z2, 
1 j ν≤ ≤ . Она будет называться локально изо-
тропной, если все эти скалярные сцены являются 
локально изотропными. Из этого определения 
следует, что j j

AE mξ =a , A∈a  и 1 j ν≤ ≤ . Вектор 

Am = 1( )j
jAm ν≤ ≤  будет называться вектором сред-

них значений объекта ξA. Для соседних объектов 
ξA и ξB всегда предполагается, что 0( , ) .A Bd >m m

Довольно часто, кроме среднего арифмети-
ческого значения, по изображениям вычисля-
ются и другие признаки. В этом случае, помимо 
локальной изотропности к случайному полю, 
необходимо предъявлять дополнительные тре-
бования. Если предположить, что образующие 
объект ξA случайные величины в совокупности 
независимы и имеют одно и то же распределение 

( ( ))A A y YP p y ∈= , то изображение xA превращается 
в случайную выборку. В этом случае его можно 
использовать для оценки неизвестных вероятно-
стей ( )Ap y ,  y Y∈ , и числовых характеристик рас-
пределения AP , включая среднее значение Am . 
В противном случае, у относительной частоты 
появления значения y Y∈ на изображении Ax
отсутствует содержательная интерпретация. 

Далее сцены, состоящие из объектов, образо-
ванных в совокупности независимыми случай-
ными величинами с одним и тем же распреде-
лением, будут называться бернуллиевскими 
скалярными сценами. В случае векторных сцен 
предположение о независимости и равенстве 
распределений относится к векторным случай-
ным величинам ξa, A∈a , образующим объект 
ξA. Очевидно, что каждая бернуллиевская сцена 
является локально изотропной.

Визуальный анализ скалярных изображе-
ний, полученных в различных спектральных 
зонах, свидетельствует о том, что средняя яр-
кость заданного объекта часто оказывается 
выше или ниже средней яркости окружаю-
щего его фона хотя бы на одном из изображений. 
Объекты с таким свойством иногда называют-
ся пятнами. Очевидно, что пятна составляют 
довольно широкий класс объектов и поэтому 
заслуживают определенного внимания. Далее 
предполагается, что все заданные объекты яв-
ляются пятнами.

Исследование пятен начнем с их формаль-
ного определения. Пусть ( , )Q lz  – квадрат на 2Z  
со стороной l и левым верхним пикселом 2Z∈z , 
задаваемый равенством вида

( , )Q lz = 2
1 2 1 2{ ( , ) : , , }j j jt t Z z t z l j= ∈ ≤ ≤ + =t .

Точки z и t из 2Z  будут называться соседями, 
если евклидово расстояние между ними ( , )d z t  
равно единице. Очевидно, что каждый пиксел 
имеет четырех соседей. Подмножество ( )Fr Q  
точек из ( , )Q lz  назовем грани цей квадрата, если 
каждая точка ( )Fr Q∈z  имеет хотя бы одного со-
седа из 2 \Z Q. Очевидно, что 4| ( ( , ))|Fr Q l l=z .

Рассмотрим частный случай, когда каждый 
пиксел 2Z∈z  описывается скалярной случайной 
величиной ξz, а исходной информацией о сцене 
служит единственное изображение 2( )

Z
x x

∈
= z z

. 
Пусть A – связное конечное подмножество из 

2Z . Объект ξA будет называться светлым (соот-
ветственно темным) пятном с диаметром ( )d A , 
если, во-первых, существует квадрат Q на Z2 та-
кой, что ( \ ( ))A Q Fr Q⊂ ; во-вторых, \Q AE mξ =z , 

\Q A∈z , и, в-третьих, \A Q Am m>  (соответствен-
но \A Q Am m< ). Пикселы \ \( )Q A Q Aξ ξ ∈= z z  будут 
называться окрестностью пятна (или фоном). 

В общем случае, когда 1ν≥ , первое усло-
вие остается без изменения, второе условие 
принимает вид Eξz = mQ\A, z ∈ Q\A, а третье – 

0\( , )A Q Ad >m m , означает, что хотя бы для одной 
скалярной сцены объект является пятном.

При работе с векторными случайными вели-
чинами используется введенное ранее понятие 
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случайного расстояния [3]. Приведем его опреде-
ление, которое понадобится далее. 

Расстояние d на Rν  будет называться борелев-
ским, если борелевским является отображение 
:d R Rν ν× . Из свойств борелевских функций 

следует, что расстояние Евклида и многие другие 
известные расстояния являются борелевски-
ми. Пусть d – борелевское расстояние на Rν, а 
ξ = (ξj)1 ≤ j ≤ ν и η = (ηj)1 ≤ j ≤ ν – векторные случайные 
величины, определенные на некотором вероят-
ностном пространстве (Ω, Α, P). Известно, что 
отображение d(ξ, η): RΩ→ , определяемое равен-
ством d(ξ, η)(ω) = d(ξ (ω), η (ω)), также будет слу-
чайной величиной на (Ω, Α, P). Из определения 
расстояния следует, что при каждом ω Ω∈  будут 
выполняться аксиомы расстояния. Это позволяет 
назвать отображение d случайным расстоянием 
на множестве ν -мерных случайных величин, 
а случайную величинуd(ξ, η) – случайным рас-
стоянием между ξ и η.

Сегментация

Пусть A – связное подмножество на Z2 с диа-
метром ( )d A , которое является проекцией объ-
екта ( )A A∈= a aξ ξ  векторной сцены с вектором 
средних значений 1( )j

A jAm ν≤ ≤=m . Для любого 
2( )l d A≥ +  существует квадрат Q на Z2 со сто-

роной l такой, что \ ( )A Q Fr Q⊂ . Будем называть 
семейство ξQ = (ξz)z ∈ Q зоной интереса для объекта 
ξA, если пересечение проекции Q с проекцией лю-
бого другого заданного объекта является пустым 
множеством. 

Очевидно, что каждый объект с признаком 
пятна имеет зону интереса. Некоторые подходы 
к формализации задачи поиска зон интереса для 
пятен и результаты ее решения обсуждались ранее 
[4]. Поэтому в настоящей работе речь пойдет только 
о сегментации зон интереса на две части с именами 
“объект” и “фон”. Вначале рассмотрим решение 
этой задачи для локально изотропной векторной 
сцены.

Пусть ξA = (ξa)a ∈ A – заданный объект с пло-
щадью |A|, ξQ = (ξz)z ∈ Q – его зона интереса, а 

1( )j
A jAm ν≤ ≤=m  и 1\ \( )j

Q A jQ Am ν≤ ≤=m – векторы 
средних значений самого объекта и его фона. Из 
определения зоны интереса следует, что для лю-
бых A∈a  и \Q A∈z  имеет место неравенство

d(Eξa, mQ\A) = d(mA, mQ\A) > 0 =

= d(Eξz, mQ\A).                        
    (1)

Покажем, что его можно применить для сег-
ментации зоны интереса. Пусть 
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– оценки неизвестного вектора Eξz и неизвестного 
вектора \Q Am соответственно, а ( )Frd zx ,x – рас-
стояние между ними. Так как d непрерывно, то 
( )Frd zx ,x сходится по вероятности к d(Eξz, mQ\A) 

при r →+∞ [5]. Если упорядочить ( )Frd zx ,x , 
\ ( )Q Fr Q∈z  по возрастанию, то при достаточно 

большом радиусе сглаживания r на |A| последних 
местах будут находиться расстояния ( )Frd ax ,x , 

A∈a , соответствующие пикселaм объекта. 
Отметим, что в изложенном методе квантилей 

используются только средние арифметические 
значения zx , которые являются оценками не-
известных Eξz. Поэтому метод применим для 
локально изотропных сцен.

Рассмотрим далее некоторые из возможных 
решений задачи сегментации в рамках бернулли-
евской векторной сцены. Начнем со случая, когда 

1ν= . Если рассматривать яркость пикселa в ка-
честве признака, то сегментацию зоны инте реса 
можно рассматривать как задачу классифи кации 
ее пикселов на два класса – с номером 1 (объект) 
и номером 2 (фон). Известно, что для построения 
байесовского решающего правила 1 2: { , }h Y∗ →  
с минимальной вероятностью ошибки классифи-
кации ( )e h∗  требуется знать априорные вероятно-
сти ( )P A , ( \ )P Q A  и распределения признаков 

( ( ))A A y YP p y ∈= , \ \( ( ))Q A Q A y YP p y ∈=  для каждого 
класса. Оказывается, что необходимую информа-
цию можно получить из изображения бернуллиев-
ской сцены. Действительно, так как площадь про-
екции объекта известна, а размеры зоны интереса 
выбираются на этапе дешифрирования, то есте-
ственно определить ( )P A  и ( \ )P Q A  равенствами

\
( ) , ( \ ) .

Q AA
P A P Q A

Q Q
= =

Пусть Qx – изображение зоны интереса, а 
( )Qn y , ( )An y  и \ ( )Q An y  – количество пикселов с 

яркостью y, y Y∈ , зоны интереса, объекта и фона 
соответственно, которые наблюдаются на Qx , Ax  
и \Q Ax . Известно, что относительные частоты
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являются состоятельными оценками неизвест-
ных вероятностей, образующих распределения 

|

,
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PQ зоны интереса, PA объекта и PQ\A фона. Легко 
проверить, что они удовлетворяют уравнению

\( ) ( ) ( ) { ( \ ) ( ),Q A Q Ap y P A p y P Q A p y y Y= + ∈   
(2)

с двумя неизвестными ( )Ap y  и \ ( )Q Ap y . Пусть 
( )Fr Q  – граница зоны интереса, ( )Fr Qx  – ее изо-

бражение и ( ) ( )Fr Qn y  – количество пикселов 
границы с яркостью y,  y Y∈ , на ( )Fr Qx . Очевидно, 
что ( ) ( )Fr yp y , определяемая равенством

( )
( )

( )
( ) , ,

( )
Fr Q

Fr Q
n y

p y y Y
Fr Q

= ∈

так же, как и \ ( )Q Ap y , является оценкой для 
неизвестной \ ( )Q Ap y . Из сходимости по вероят-
ности оценок \ ( )Q Ap y  и ( ) ( )Fr Qp y  к неизвестной 
вероятности \ ( )Q Ap y  следует, что \ ( )Q Ap y ≈

( ) ( )Fr Qp y  при большом объеме | ( ) |Fr Q  выборки. 
После замены в уравнении (2) неизвестной оцен-
ки \ ( )Q Ap y  оценкой ( ) ( )Fr Qp y  оно превращается 
в уравнение с одним неизвестным ( )Ap y . Его 
решение завершает нахождение приближенных 
значений для вероятностей, образующих распре-
деления объекта AP  и фона \Q AP , необходимые 
для классификации пикселов зоны интереса. 
При этом решающее правило h и вероятность 
ошибки ( )e h  классификации принимают вид 
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Очевидно, что ( )e h  с увеличением длины гра-
ницы стремится к вероятности ошибки ( )e h∗  байе-
совского (оптимального) решающего правила.

В изложенном методе сегментации по изо-
бражению xFr(Q) границы зоны интереса вычис-
лялись |Y| оценок неизвестных вероятностей, 
образующих распределение \ \( ( ))Q A Q A y YP p y ∈= . 
При отсутствии выборки соответствующего объ-
ема, что является обычным делом в прикладных 
задачах, метод не применим. Однако для бернул-
лиевских сцен можно воспользоваться централь-
ной предельной теоремой. Действительно, пусть 

( )A Aξ ξ ∈= a a – заданный объект с неизвестными 
средним значением Am  и дисперсией 2σA, ( , )B rz  – 
круг, принадлежащий A, и xz – среднее ариф-
метическое значение, вычисленное по кругу. 
При достаточно большом радиусе r распреде-
ление случайной величины xz  можно считать 
нормальным с параметрами 2 /( , | ( ( , ) |)A Am B rσ z , 
независимо от распределения xz. Это позволяет 
вместо неизвестных распределений объекта AP  

и фона PQ\A воспользоваться нормальными рас-
пределениями с параметрами ( Ax , 2 / | ( , ) |As B r0 ) и 
( \Q Ax , 2

\ / | ( , ) |Q As B r0 ) соответственно. В качестве 
неизвестных параметров \Q Ax  и 2

\Q As  фона ис-
пользуются их оценки Frx  и 2

Frs , вычисленные 
по изображению границы:
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Неизвестные параметры объекта Ax  и 2
As  опре-

деляются из уравнений 

\( ) ( \ )Q A Q Ax P A x P Q A x= +                 (3)
и 

2 2 2 2 2 2\ \ \( )( ) ( )( )Q Q A A Q A Q As x P A s x P Q A s x+ = + + +
 
(4)

после замены в них неизвестных \Q Ax  и 2
\Q As  

приближенными значениями, вычисленными 
по границе зоны интереса. Напомним, что в ка-
честве признака пиксела \ ( )Q Fr Q∈z  требуется 
рассматривать не его изображение xz, а оценку 
xz  неизвестного среднего значения Eξz.

Обобщение байесовских методов на случай не-
скольких изображений ( 1ν> ) очевидно. Так как 
количество оцениваемых вероятностей экспо-
ненциально зависит от ν, то их непосредственная 
оценка в прикладных задачах представляется 
весьма проблематичной. При использовании 
многомерного варианта центральной предель-
ной теоремы по выборке достаточно оценить ν 
координат вектора средних значений и 1( )ν ν−  
ковариаций.

Компьютерные эксперименты

Для иллюстрации изложенных методов сег-
ментации зон интереса проведены компьютер-
ные эксперименты. В них используются фраг-
менты трех пространственно совмещенных изо-
бражений реальной сцены, полученные с лета-
тельного аппарата в спектральных зонах 0,7–1,1, 
3,0–5,0 и 8,0–12,0 мкм. Каждый пиксел имеет 
форму квадрата со стороной 0,3 м. На каждом 
фрагменте программным способом построены 
изображения восьми воображаемых объектов, 
отсутствующих на реальной сцене. Предполага-
ется, что воображаемые объекты имеют прямо-
угольную форму, случайные координаты и ори-
ентацию, а их размеры совпадают с размерами 
реальных объектов. Яркости пикселов каждого 
воображаемого объекта являются независимыми 
в совокупности случайными величинами с нор-
мальным законом распределения. Его парамет-
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рами служат оценки среднего значения и диспер-
сии реальных объектов. Для первого фрагмента 

1
Am  = 46 и 1 2( )σA = 214, для второго 2

Am  = 220 и 
2 2( )σA  = 104, для третьего 3

Am  = 230 и 3 2( )σA = 27. 
Свойства сцены в окрестности каждого объекта 
описываются отношением сигнал/шум k

−
=

σ + σ
A Q\A

A Q\A

| m m |
k .

Его значения для каждого изображения при-
ведены в таблице. В качестве примера на рис. 1 
приведен фрагмент первого (лучшего, с точки 
зрения отношения сигнал/шум) изображения 
сцены с минимальным значением k = 1,60. 

Каждое изображение сцены использовалось 
вначале для поиска зон интереса, а затем – для 
их сегментации. Результаты сегментации зон 
интереса методом квантилей с применением 
только первого изображения представлены на 
рис. 2, а с применением всех трех изображений – 
на рис. 3. Сравнение полученных результатов 
позволяет отметить два важных обстоятельства. 
Во-первых, построить зону интереса для второго 
объекта с использованием только первого изо-
бражения не удалось. Во-вторых, координаты 
зон интереса, выявленных с использованием 
только первого и с использованием всех трех 
изображений, оказались разными. 

Свойства сцены (отношение сигнал/шум)

Номер 
изображения

Номера объектов

1 2 3 4 5 6 7 8

1 2,79 1,60 4,68 2,34 2,0 5,51 3,40 2,60

2 3,29 5,79 0,42 1,23 1,70 1,00 0,22 0,77

3 7,13 6,66 0,58 1,72 2,34 1,41 1,87 2,20

Рис. 2. Результаты сегментации по первому 
изображению.

Рис. 1. Первое изображение сцены.

Если сцена описывается бернуллиевским 
случайным полем, то изображение каждого 
объекта является случайной выборкой и мо-
жет исполь зоваться для оценки вероятностей и 
числовых параметров случайных яркостей. На 
рис. 4 представлены результаты байесовской 
класси фикации пикселов зон интереса с оцен-
кой неизвестных вероятностей, образующих 

Рис. 3. Результаты сегментации по трем изо-
бражениям.
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распределения яркостей объекта и фона (общий 
случай).

На рис. 5 представлены результаты байесов-
ской классификации в случае, когда в качестве 
признака пиксела \ ( )Q Fr Q∈z  использовалось 
среднее арифметическое значение xz, получае-
мое осреднением по кругу. В соответствии с 
центральной предельной теоремой распреде-
ление такой суммы стремится к нормальному 
при увеличении радиуса. Черные квадраты на 
изображении означают, что в соответствующих 
зонах интереса оценки для неизвестных параме-
тров Ax  и 2

As , полученные в результате решения 
уравнений (3) и (4), не удовлетворяют очевидным 

Рис. 4. Байесовская классификация. Общий 
случай.

Рис. 5. Байесовская классификация. Оценка 
параметров.

ограничениям. Действительно, при сегментации 
в этих зонах оценки для x–A оказались слишком 
большими (больше чем 1 255| |Y − = ), а оценки 
для дисперсии 2

As  – даже отрицательными. При-
чина появления таких значений заключается в 
том, что изображения зон интереса рассматри-
ваемой сцены не являются случайными выбор-
ками, т. е. исходные предположения о свойствах 
сцены оказались ложными. 

Заключение

В работе рассматриваются методы сегмен-
тации зон интереса для двух моделей реальной 
сцены. Для локально изотропных сцен с корре-
ляционной функцией, стремящейся к нулю, 
единственным признаком объекта, вычисляе-
мым по изображению, является оценка его 
среднего значения. Для бернуллиевских сцен 
по изображению возможно (по крайней мере 
теоретически) восстановление распределения 
вероятностей объекта. Это позволяет построить 
для сегментации зоны интереса асимптотически 
оптимальное решающее правило.

Тем не менее результаты компьютерных экс-
периментов по сегментации зон интереса рассмо-
тренной в настоящей работе сцены показывают, 
что применение байесовских (оптимальных) 
методов может дать ложные результаты. По-
добная ситуация возникает в тех случаях, когда 
используемые при построении математической 
модели предположения для реальной сцены не 
выполняются.
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