
91
ОПТИЧЕСКИЙ ЖУРНАЛ. 2024. Том 91. № 1. С. 91–100

Оптический
журнал

Оптическое материаловедение и технологии  
Optical materials science and technology 

Научная статья

Research Article OPTICHESKII ZHURNAL. 2024. V. 91. № 1. P. 91–100

DOI: 10.17586/1023-5086-2024-91-01-91-100 

УДК 532.6, 53.06, 535.016

Влияние лазерно-осажденных 
углерод-содержащих наночастиц 
на ориентирующие свойства проводящего 
слоя на основе оксида индия и олова 
для жидкокристаллических устройств

АНДРЕЙ СЕРГЕЕВИЧ ТОЙККА1 , ЛАРИСА ОЛЕГОВНА ФЕДОРОВА2, 
НАТАЛИЯ ВЛАДИМИРОВНА КАМАНИНА3

1, 2, 3Санкт-Петербургский государственный электротехнический университет («ЛЭТИ») 
им. В.И. Ульянова (Ленина), Санкт-Петербург, Россия
1, 2, 3Петербургский институт ядерной физики им. Б.П. Константинова национального 
исследовательского центра «Курчатовский институт», Гатчина Ленинградской обл., Россия
3Научно-производственное объединение "Государственный оптический институт им. С.И. Вавилова", 
Санкт-Петербург, Россия
1astoikka.nano@gmail.com https://orcid.org/0000-0002-8694-8497
2loresafyoct@gmail.com https://orcid.org/0009-0001-6753-4328
3nvkamanina@mail.ru https://orcid.org/0000-0002-2903-2685

Аннотация
Предмет исследования. Тонкие пленки оксида индия и олова с лазерно-осажденными угле-

родными нанотрубками и шунгитами. Цель работы. Экспериментальное исследование влияния 
углеродных нанотрубок и шунгитов на свойства поверхности тонких пленок оксида индия и 
олова для их использования в качестве ориентирующих слоев для устройств на основе немати-
ческих жидких кристаллов. Метод. Осаждение тонких пленок и наночастиц проводилось лазер-
но-ориентированным методом с использованием CO2-лазера. Оптическая схема была согласована 
с управляющей электрической сеткой, напряженность поля на которой варьировалась в диа-
пазоне 100–600 В/см. Для диагностики поверхности последовательно использовались атомно-
силовой микроскоп в контактном режиме и измерения краевого угла смачивания методом ле-
жащей капли. Для учета шероховатости измерялся гистерезис смачивания. Расчет свободной 
поверхностной энергии проведен методом Оунса–Вендта–Рабеля–Кьелбле. Основные резуль-
таты. Описана связь между используемыми наночастицами, режимом их осаждения и шерохо-
ватостью. Зафиксирован рост дисперсионной составляющей свободной поверхностной энергии 
при осаждении углеродных нанотрубок и рост полярной компоненты при осаждении шунгитов. 
Показана тенденция изменения ориентации жидких кристаллов 4-циано-4′-пентилбифенила 
с наклонной ориентацией в направлении к гомеотропной при осаждении углеродных нанотрубок, 
и показан переход от наклонной ориентации в направлении к планарной при осаждении шунги-
тов. Практическая значимость. Полученные результаты свидетельствуют о возможном примене-
нии пленок оксида индия и олова не только в качестве просветляющих покрытий и контактов, 
но и в качестве ориентирующих слоев с возможностью перестройки свойств в широком спек-
тральном и энергетическом диапазонах. Это позволяет упрощать архитектуру нематических 
жидкокристаллических устройств, используемых в лазерных технологиях, дисплейной технике, 
биомедицине и в прочих смежных направлениях.
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Abstract
Subject of study. Thin films of indium tin oxide with laser-deposited carbon nanotubes and 

shungites. Aim of study. Experimental study of the influence of carbon nanotubes and shungites on 

the surface properties of indium tin oxide thin films in order to use them as the orienting layers in 

the nematic liquid crystal devices. Method. The deposition of thin films and nanoparticles was carried 

out by a laser-oriented method using a CO2 laser. The optical scheme was coordinated with the control 

electrical grid, the field strength on which varied in the range of 100–600 V/cm. To diagnose the 

surface, atomic force microscopy in the contact mode and measurement of the contact angle by the 

sessile drop method were used. To take into account roughness, a technique for measuring wetting 

hysteresis was used. To calculate the free surface energy, the Owens–Wendt–Rabel–Kaelble method 

was used. Main results. The relationship between the nanoparticles used, their deposition mode and 

roughness is described. An increase in the dispersion component of free surface energy was revealed 

during the deposition of carbon nanotubes and an increase in the polar component during the deposition 

of shungites. The tendency for the orientation of 4-cyano-4′-pentylbiphenyl liquid crystals to change 

from a tilted orientation towards homeotropic during the deposition of carbon nanotubes is shown, 

and the transition from tilted orientation towards planar during the deposition of shungites is shown. 

Practical significance. The results obtained indicate the possible use of indium tin oxide films not 

only as antireflective coatings and contacts, but also as orienting layers with the ability to tunable 

properties in a wide spectral and energy range. This makes it possible to simplify the architecture of 

nematic liquid crystal devices used in laser technologies, display techniques, biomedicine and other 

related areas.
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ВВЕДЕНИЕ
Устройства на основе нематических жидких 
кристаллов (НЖК) находят широкое приме-
нение в лазерной [1] и дисплейной [2] технике, 
биомедицине [3], криптографии [4] и в прочих 
междисциплинарных областях науки и тех-
ники [5–6]. Подобное разнообразие обусловле-
но анизотропией физико-химических свойств 
НЖК, их вязкостью и текучестью, а также 
возможностью изменять оптические свойства  
под действием электрических, магнитных, све- 
товых и акустических полей [7].

При разработке НЖК-устройств особое 
внимание уделяется распределению молекул 
жидких кристаллов (ЖК) в объеме и в припо-
верхностных слоях. Для описания оптических 
свойств ЖК-среды используют вектор n, кото-
рый описывает распределение молекул ЖК  
в точке (x, y, z) [8]

 .

⎛ ⎞ ⎛ ⎞⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟= ≈ −⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠⎝ ⎠

 (1)

Индексы si соответствуют splay-деформа- 
ции («поперечный изгиб», s1 = nx/ x и  
s2 = ny/ y), ti соответствуют twist-деформации 
(«кручение», t1 = ny/ x и t2 = nx/ y), bi соот-
ветствуют bend-деформации («продольный из-
гиб», b1 = nx/ z и b2 = ny/ z).

Компоненты тензора деформации ЖК опре-
деляются исходя из нахождения минимума 
функционала свободной энергии G, в кото-
рый входят объемная составляющая (теория 
Франка–Озеена) [9, 10] и поверхностные со-
ставляющие, приходящиеся на границы раз-
дела «ЖК – ориентант» (теория Эриксена) [11],

 .= + +∫ ∫ ∫   (2)

Величины gv и gs — свободная энергия ЖК, 
приходящаяся на единицу объема и на еди-
ницу площади соответственно. Объемная со-
ставляющая зависит от вида деформации 
ЖК, их вязкоупругих и оптических свойств. 
Поверхностная составляющая в большей сте-
пени зависит от границы раздела, свободной 
поверхностной энергии, морфологии и релье-
фа ориентанта, а также от свойств ЖК — по-
верхностного натяжения, адгезии, вязкоупру-
гих свойств.

Учитывая разделение функционала свобод-
ной энергии на объемную и поверхностную 
составляющие, проблему улучшения свойств 
НЖК с позиции методологии можно разбить 
на два блока — сенсибилизация объема ме-
зофазы и наноструктурирование поверхно-
сти прилегающей подложки. При изменении 
объемных свойств ЖК существенные резуль-
таты удается получить использованием нано-
структур в качестве сенсибилизатора [12–15]. 
В этом случае  становятся возможными из-
менения электрооптических и вязкоупругих 
свойств ЖК-сред, что позволяет расширять 
область применения ЖК-устройств, а также 
улучшать характеристики уже существую-
щих технических решений. Среди исследова-
ний, посвященных решению проблем границ 
раздела «ЖК – ориентант», множество работ 
направлено на исследование свойств высоко-
молекулярных органических соединений, 
способов их обработки и структурирования 
наночастицами [16–19].

Настоящая работа посвящена исследованию 
модификации поверхностей тонких пленок на 
основе оксида индия и олова (ITO) в контексте 
их использования в качестве ориентирующих 
слоев для НЖК-устройств. Оксид индия и оло-
ва — вырожденный полупроводник с n-типом 
проводимости, материал оптически прозрачен 
в видимой и ближней инфракрасной областях 
спектра [20, 21]. Благодаря совокупности элек-
трических и оптических свойств ITO является 
одним из основных материалов прозрачных 
проводящих контактов в НЖК-устройствах 
[22–24]. Для формирования границы раздела 
с ЖК-средой на ITO, как правило, наносятся 
органические ориентанты с необходимой мор-
фологией [25]. Использование органических 
ориентантов обусловлено, в первую очередь, 
возможностью изменения рельефа и свойств 
поверхности в широком диапазоне. Однако 
при данном подходе существует ряд недо-
статков: увеличение количества функцио-
нальных слоев является причиной снижения 
срока службы устройств и роста вероятности 
брака; электрическая проводимость органи-
ческих соединений существенно уступает тон-
копленочным полупроводникам и сверхтон-
ким металлическим пленкам, следователь-
но, потребляемая электрическая мощность  
существенно возрастает; использование ори-
ентантов снижает оптическое пропускание  
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устройств за счет потерь на поглощение и от-
ражение [26, 27].

Особенностью и научной новизной текущей 
работы является рассмотрение пленок ITO с ла-
зерно-осажденными углеродными нанотруб-
ками и шунгитами с позиции их применения 
в качестве ориентантов, что позволяет адапти-
ровать разрабатываемое ЖК-устройство под 
необходимую задачу. 

Цель данной работы заключается в экспе-
риментальном исследовании влияния угле-
родных нанотрубок и шунгитов на свойства 
поверхности тонких пленок ITO для их ис-
пользования в качестве ориентирующих слоев 
для устройств на основе НЖК.

ЭКСПЕРИМЕНТАЛЬНЫЕ УСЛОВИЯ
Для формирования исследуемых образцов на 
стеклянные (К8) подложки толщиной 3 мм 
последовательно осаждались оксиды индия 
и олова (ITO, чистота порошка 99,99%, содер-
жание оксидов индия и олова 9:1). Затем на об-
разцы с ITO наносились отдельно углеродные 
нанотрубки (Alrdich, № 704121, одностенные, 
хиральность <7,6> — полупроводниковая) 
и шунгиты (предоставлены для исследова-
ний Карельским научным центром, Петроза-
водск, РФ). Их нанесение осуществлялось ме-
тодом лазерно-ориентированного осаждения 
на основе CO2-лазера (длина волны излучения  
10,6 мкм) [28]. В промежутке между источни-
ком и подложками расположена управляю-
щая электрическая сетка, на которой варьи-
ровалась напряженность электрического поля 
от 100 до 600 В/см. Данный диапазон обуслов-
лен возможностью модификации электрооп-
тических и морфологических свойств поверх-
ности ITO [24, 29]. В качестве дополнительно-
го механизма ориентирования в ряде образцов 
проведена обработка поверхностной электро-
магнитной волной [30], что возможно реали-
зовать в той же самой установке лазерно-ори-
ентированного осаждения. По глубине обра-
ботки он является более точным в сравнении  
с прямой лазерной абляцией.

Диагностика рельефа в микромасштабе осу-
ществлялась при использовании атомно-сило-
вого микроскопа (АСМ) Solver Next (NT-MDT,  
Зеленоград, РФ) в контактном режиме, об-
ласть сканирования 30 30 мкм, частота ска-
нирования 1 Гц. Расчет статистических пара-

метров рельефа проводился в программном 
пакете Nova Px.

Характеризация рельефа в макромасштабе, 
а также определение ряда свойств поверхности 
осуществлялись с использованием установки 
для измерения угла смачивания OCA 15EC 
(DataPhysics Insturements, Фильдерштадт, 
Германия). Параметры капли определялись 
в программном пакете SCA 20 (метод лежа-
щей капли, эллиптическая аппроксимация). 
Расчет компонентов свободной поверхностной 
энергии проводился методом Оунса–Вендта–
Рабеля–Кьелбле (ОВРК) [31]. В качестве ис-
пользуемых жидкостей были выбраны дис-
тиллированная вода и толуол как полярная и 
неполярная системы. Для визуализации эф-
фекта ориентирования НЖК использовались 
капли ЖК 4-циано-4′-пентилбифенила (5CB). 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ
Особенность АСМ заключается в том, что дан-
ные рельефа определяются относительно ли-
нии нулевого уровня, которая зависит от ше-
роховатости подложки, крепления образца 
и параметров его держателя. Для сравнения 
среднеквадратической шероховатости поверх-
ностей пленок ITO воспользуемся аппрокси-
мациями I, II и III порядков рельефа (табл. 1). 
Заметим, что при лазерно-ориентированном 
осаждении углеродных нанотрубок и шунги-
тов увеличивается шероховатость поверхности 
относительно чистого ITO. При этом данный 
параметр зависит от напряженности электри-
ческого поля, используемого в процессе осаж-
дения наночастиц. В случае углеродных нано-
трубок с ростом напряженности шероховатость 
увеличивается, поскольку наноструктуры по 
мере пролета в электрическом поле ориентиру-
ются относительно него, следовательно, угол 
отклонения от нормали к поверхности под-
ложки уменьшается, и углеродные нанотруб-
ки вносят больший вклад в шероховатость.  
В случае шунгитов наблюдалась обратная тен-
денция, т.е. при напряженности поля 100 В/см 
шероховатость была больше, чем при 600 В/см. 

При измерении углов смачивания и расчете 
параметров свободной энергии часто делает-
ся допущение, что поверхность исследуемых 
структур идеально гладкая [31, 32]. Это необ-
ходимо, для того чтобы не учитывать погреш-
ность, вносимую дополнительной площадью  
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Таблица 1. Шероховатость модифицированной поверхности пленки ITO на cтеклянной (К8) подложке  
в зависимости от порядка аппроксимации профилей, полученных методом атомно-силовой микроскопии 

Table 1. Roughness of the modified surface of an ITO film on a К8 glass substrate depending on the approximation 
order of profiles obtained by atomic force microscopy

Тип обработки

Среднеквадратическая шероховатость, нм

I порядок II порядок III порядок

Среднее 
значение СКО* Среднее 

значение СКО Среднее 
значение СКО

Толщина слоя ITO порядка 100 нм

Без обработки** 18,0 10,6 11,6 4,7 4,4 1,7

УНТ*** (100 В/см) 27,6 15,5 13,4 2,6 7,6 6,4

УНТ (200 В/см) 150,5 87,8 51,1 9,8 25,4 5,4

УНТ (600 В/см) 236,8 150,2 86,5 13,1 17,8 4,4

Толщина слоя ITO порядка 60 нм

Без обработки 0,59 мкм 0,15 мкм 0,25 мкм 0,12 мкм 0,28 мкм 0,16 мкм

ПЭВ**** 107,8 42,3 45,4 22,8 35,0 12,7

ПЭВ/Шунгит (100 В/см) 118,3 50,7 88,6 14,1 65,2 27,6

ПЭВ/Шунгит (600 В/см) 72,6 13,6 40,3 7,2 30,5 8,6

Примечание. *СКО — среднеквадратическое отклонение. **При анализе данного образца в программе 

Nova Px погрешность определялась до 0,01 мкм, так как структуры шероховатые. ***УНТ — углеродные 

нанотрубки. ****ПЭВ — поверхностная электромагнитная волна.

Note. *СКО is standard deviation. **When analyzing this sample in the Nova Px program, the error was 

determined to 0.01 μm, since the structures are rough. ***УНТ are carbon nanotubes. ****ПЭВ is surface 

electromagnetic wave.

контактов на шероховатостях (состояние Вен- 
целя) [33]. В случае исследуемых структур ITO 
необходимо принять во внимание, что шерохо-
ватость вносит заметный вклад в увеличение 
площади поверхности (табл. 2). Еще одна по-
грешность, которая может возникать при из-
мерении краевого угла смачивания — форми-
рование воздушной прослойки в пространстве 
между неоднородностями (состояние Касси–
Бакстера) [31–33]. В общем случае измеряемые 
значения CB зависят от геометрии поверхно-
сти (r — коэффициент шероховатости по пло-
щади, f — доля промежутка между шерохова-
тостями, заполненная материалом капли), в то 
время как свойство материала характеризует-
ся равновесным углом смачивания Y.

 ( )cos cos .= + −   (3)

При f = 1 наблюдается состояние Венцеля, 
если и r = 1, то это соответствует случаю иде-
ально гладкой поверхности. Можно заме- 

тить, что в табл. 2 приведены и значения, ко-
торые теоретически связаны с параметром r. 
Ограничение заключается в используемых 
масштабах измерений: при атомно-силовой 
микроскопии апертура составляет 30 мкм, 
при измерении углов смачивания диаметр ка-
пель от 0,5 мм, в то время как характерный 
линейный размер зерен ITO — сотни микро-
метров. Задача состоит в том, чтобы опреде-
лить параметр Y для последующих расчетов. 
Это становится возможным при измерении 
гистерезиса угла смачивания. При обозначе-
нии среднего угла отклонения на шероховато- 
стях  на линию трехфазного контакта (жид-
кость – твердое тело – газ) действует сила под 
углом Y + . При увеличении объема кон-
тактный угол ( adv) увеличивается на зна-
чение , а при уменьшении объема ( rec) — 
уменьшается на  [34]

 .
⎧ ⎫= +⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪= −⎪ ⎪⎩ ⎭

  (4)
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Таблица 3. Гистерезис угла смачивания модифицированных поверхностей слоя ITO на стеклянной (К8) 
подложке каплями дистиллированной воды

Table 3. Hysteresis of the contact angle of an ITO modified surfaces on a К8 glass substrate with drops of distilled 
water

Тип обработки
Параметры гистерезиса

adv, град rec, град Y, град , град

Толщина слоя ITO порядка 100 нм

Без обработки 91,7 79,0 85,35 6,35

УНТ (100 В/см) 124,5 106,8 115,65 8,85

УНТ (200 В/см) 117,0 74,3 95,65 21,35

УНТ (600 В/см) 121,5 117,5 119,5 2,0

Толщина слоя ITO порядка 60 нм

Без обработки 97,7 83,7 90,7 7,0

ПЭВ 95,6 74,1 84,6 10,8

ПЭВ/Шунгит (100 В/см) 70,2 56,5 63,4 6,9

ПЭВ/Шунгит (600 В/см) 76 72 74,0 2,0

При последовательном измерении кон-
тактных углов смачивания поверхностей ITO, 
при увеличении и снижении объема капли и 
дальнейшем решении системы уравнений (4)  
удается определить равновесный угол Y и 
геометрический параметр  (табл. 3). При- 
мечательно, что параметр  может управлять-

ся через напряженность электрического по-
ля в процессе осаждения наноструктур и при 
600 В/см соответствует своему минимальному 
значению.

Далее перейдем к рассмотрению свободной 
поверхностной энергии модификаций ITO. 
Согласно теории Оуэнса–Вендта [31] свободная  

Таблица 2. Увеличение площади модифицированной поверхности рельефа пленки ITO на стеклянной (К8) 
подложке относительно идеально гладкой поверхности в зависимости от порядка аппроксимации профилей, 

полученных методом атомно-силовой микроскопии

Table 2. Increasing the area of the modified relief surface of an ITO film on a К8 glass substrate relative to an ideally 
smooth surface depending on the approximation order of profiles obtained by atomic force microscopy

Тип обработки

Увеличение площади поверхности, %

I порядок II порядок III порядок

Среднее СКО Среднее СКО Среднее СКО

Толщина слоя ITO порядка 100 нм

Без обработки 0,0053 0,0048 0,0028 0,0027 0,0011 0,008

УНТ (100 В/см) 0,0682 0,0529 0,0627 0,0473 0,0614 0,0468

УНТ (200 В/см) 0,3710 0,2085 0,1968 0,0648 0,1805 0,0595

УНТ (600 В/см) 0,6638 0,4666 0,2359 0,0515 0,1859 0,0451

Толщина слоя ITO порядка 60 нм

Без обработки 0,6952 0,2046 0,4460 0,3196 0,5775 0,2725

ПЭВ 0,1827 0,1472 0,1681 0,1331 0,1623 0,1259

ПЭВ/Шунгит (100 В/см) 0,7365 0,1252 0,6860 0,1061 0,0672 0,1146

ПЭВ/Шунгит (600 В/см) 0,0982 0,0772 0,0832 0,0722 0,0794 0,0723
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Таблица 4. Равновесные углы смачивания и свободная поверхностная энергия модифицированной 
поверхности слоя ITO на стеклянной (К8) подложке 

Table 4. Equilibrium contact angles and free surface energy of the modified surface of an ITO layer on a K8 glass 
substrate

Тип обработки Y, град Свободная поверхностная энергия, мДж/м2

Вода Толуол Полярная Дисперсионная Общая

Толщина слоя ITO порядка 100 нм

Без обработки 85,35 17,3 8,2 22,2 30,4

УНТ (100 В/см) 115,65 24,9 0,8 29,2 30,0

УНТ (200 В/см) 95,65 22,7 1,3 25,0 26,3

УНТ (600 В/см) 119,5 19,1 1,8 31,4 33,2

Толщина слоя ITO порядка 60 нм

Без обработки 90,7 31,3 3,4 21,8 25,1

ПЭВ 84,9 22 5,3 22,7 28,0

ПЭВ/Шунгит (100 В/см) 63,4 27 12,4 19,3 31,7

ПЭВ/Шунгит (600 В/см) 74,0 9,3 11,5 21,0 32,6

 

   

 

(слева)  36,6
(справа)  40,1

(слева)  52,9
(справа)  52,7

(слева)  58,3
(справа)  58,5

(слева)  42,2
(справа)  44,7

(слева)  42,5
(справа)  42,6

(слева)  27,7
(справа)  23,0

(а) (в)(б)

(г) (е)(д)

Углы смачивания каплями 5CB на поверхности слоя ITO толщиной 100 нм без обработки (а),  
с осажденными углеродными нанотрубками при напряженности электрического поля 100 В/см (б)  
и 600 В/см (в); на поверхности слоя ITO толщиной 60 нм без обработки (г), с осажденными шунгитами 

при напряженности 100 В/см (д) и 600 В/см (е)

Contact angles of 5CB droplets on the surface of a 100 nm thick ITO layer (a) without treatment, with deposited 
carbon nanotubes at an electric field strength of (б) 100 V/cm and (в) 600 V/cm; on the surface of an ITO layer 
60 nm thick (г) without treatment, with deposited shungites at a voltage of (д) 100 V/cm and (е) 600 V/cm
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поверхностная энергия ( s) может быть пред-
ставлена как сумма полярной ( s

p) и дисперси-
онной ( s

d) составляющих, которые определя-
ются исходя из следующего равенства (метод 
ОВРК):

 
( )cos

.
+

= +   (5)

Чтобы найти компоненты свободной по-
верхностной энергии модифицированных 
поверхностей ITO, необходимо использовать 
как минимум две жидкости с разным поверх-
ностным натяжением ( l

p
 — полярная состав-

ляющая, l
d — дисперсионная составляющая, 

l — результирующее значение). В качест- 
ве жидкостей использовались дистиллирован- 
ная вода ( l = 72,8 мН/м, l

p
 = 48,1 мН/м,  

l
d = 24,0 мН/м) и толуол ( l = 28,5 мН/м,  

l
p

 = 1,3 мН/м, l
d = 27,2 мН/м). Сравнительные 

данные по модифицированным поверхностям 
ITO представлены в табл. 4. На основе полу-
ченных данных следует подчеркнуть тенден-
цию, что при осаждении углеродных нано-
трубок наблюдается значительное увеличение 
дисперсионной составляющей, а при осажде-
нии шунгитов наоборот — рост полярной со-
ставляющей. Данная особенность позволяет 
реализовать противоположные эффекты при 
ориентировании молекул ЖК: при осаждении 
углеродных нанотрубок наблюдается переход 
в направлении от наклонной ориентации к го-
меотропной, при осаждении шунгитов — в на-
правлении от наклонной ориентации к планар-
ной (рисунок).

ЗАКЛЮЧЕНИЕ
Таким образом, исходя из эксперименталь-
ных данных атомно-силовой микроскопии и 
измерения краевого угла смачивания, с уче-
том проведенных экспериментов и выполнен-
ных расчетов можно сформулировать следую-
щие выводы:

1) При лазерно-ориентированном осажде-
нии углеродных нанотрубок на поверхность 
ITO изменяются свойства рельефа и свобод-
ная поверхностная энергия. Шероховатость 
(табл. 1) и площадь поверхности (табл. 2) воз-
растают с увеличением напряженности элек-
трического поля в процессе их осаждения. 

При напряженности электрического поля  
E = 100 В/см наблюдается изменение среднего 
угла наклона шероховатостей с 6,35 до 8,85 , 
при E = 200 В/см — до 21,35  (табл. 3). В слу-
чае E = 600 В/см наблюдается ориентация, 
близкая к вертикальной с  = 2,0 . При ана-
лизе свободной поверхностной энергии можно 
заметить, что углеродные нанотрубки способ-
ствуют росту дисперсионной составляющей 
с 22,2 до уровня 25,0–31,4 мДж/м2, в то же 
время наблюдается компенсация полярной со-
ставляющей (табл. 4). На основе полученных 
закономерностей в морфологии рельефа при 
варьировании напряженности электрическо-
го поля в процессе осаждения нанотрубок уда-
ется реализовать переход от наклонной ориен-
тации в сторону гомеотропной (рисунок).

2) В случае лазерно-ориентированного осаж- 
дения шунгитов большей шероховатостью и 
соответствующей площадью поверхности об-
ладают образцы, при формировании которых 
использовалась напряженность управляю-
щего поля 100 В/см (табл. 1–2). Поскольку 
системы шунгит-ITO обладают гидрофиль-
ными свойствами, то рост шероховатости 
соответствует снижению угла смачивания  
(табл. 3). Изменения в значениях углов смачи-
вания также связаны с варьированием свобод-
ной поверхностной энергии. При осаждении 
шунгитов возрастает полярная составляющая 
с 3,4 до 11,5–12,4 мДж/м2, что способству-
ет росту результирующей свободной поверх-
ностной энергии с 25,1 до 31,7–32,6 мДж/м2. 
Полученные данные согласуются со снижени-
ем значения угла смачивания каплями 5CB, 
что соответствует динамике перехода ориента-
ции молекул ЖК от наклонной к планарной.

3) Полученные и обсуждаемые результаты 
имеют потенциальное практическое приме-
нение при создании универсальных слоев ITO  
в ЖК-устройствах, которые одновременно вы-
полняют функции прозрачных электрических 
контактов, просветляющих покрытий и ориен-
тирующих слоев. Более того, на основе данных 
по смачиванию модифицированные поверхно-
сти пленок ITO имеют потенциал в микрофлю-
идных приложениях, например, в качестве 
подложек для «лабораторий на чипе». 

4) Естественно, для того чтобы более адек-
ватно с физической точки зрения установить 
разницу влияния на поверхность ITO шунгитов 
по сравнению с углеродными нанотрубками,  
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требуется дальнейшее проведение экспери-
ментов методами сканирующей электронной 
микроскопии, эллипсометрии, а также кван-
тово-химическое моделирование с учетом того  

факта, что порядка 50–57% химического со-
става шунгита связано с наличием SiO2. Ука- 
занное исследование будет запланировано и 
проведено далее.
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