УДК 681.723 МОДЕРНИЗАЦИЯ МИКРОВИЗОРОВ ПРОХОДЯЩЕГО И ОТРАЖЕННОГО СВЕТА

© 2011 г. Т. Ф. Калинина; А. И. Лопатин, канд. физ.-мат. наук; О. М. Струкова

ОАО "ЛОМО", Санкт-Петербург

E-mail: tatyaKalinina@yandex.ru

Представлены результаты модернизации цифровых микроскопов ОАО "ЛОМО" – микровизоров проходящего и отраженного света. Приведены результаты расчетного и экспериментального определения частотно-контрастных характеристик серийных и перспективных моделей микровизоров.

Ключевые слова: цифровой микроскоп, микровизор, уровень восприятия изображения, число Джонсона, частота Найквиста, частотно-контрастная характеристика микровизора.

Коды OCIS: 100.2960, 110.0180

Поступила в редакцию 31.05.2010

В настоящее время сотрудниками фирм ОАО "ЛОМО" и ООО "ЛОМО-ФОТОНИКА" ведется работа по модернизации серийно выпускаемых моделей микровизоров проходящего и отраженного света µVizo-103 [1] и µVizo-MET.

Внешний вид приборов не изменился и представлен на рис. 1. В табл. 1 приведены технические характеристики микровизоров как выпускаемых серийно, так и новых моделей, готовящихся к выпуску.

В новых микровизорах, как и в серийных, в качестве приемника излучения используется СМОЅ-матрица с диагональю 1/2" и ТFT LCD дисплей, но матрица имеет более высокое разрешение 2048×1536 пкс вместо 1280×1024 пкс, и дисплей – 1024×768 пкс вместо 640×480 пкс, сохранены режимы цифрового масштаба: 1[×] и 2[×], введен вспомогательный режим 4[×]. Для нецветных металлов и материалов и неокрашенных биологических объектов предусмотрен режим "черно-белого" изображения, при котором изображение мелких элементов объекта не имеет артефактной цветной окантовки (рис. 2).

В новых микровизорах режимы работы "Контрастность" и "Резкость" являются более действенными для повышения качества изображения. Они позволяют существенно улучшить резкость и четкость границ, контраст и, как результат, разрешение изображения в режиме реального времени (рис. 3).

Сравнение изображений, "контрастированных" с помощью режимов "Контрастность" и "Резкость", по разрешающей способности R, мкм и контрасту K(N) производилось наблюдением и обработкой изображений штрихов

Рис. 1. Внешний вид микровизоров. а – микровизор проходящего света (модель µVizo-103), б – микровизор отраженного света (модель µVizo-MET).

Характеристики	M	акровизоры uVizo-MET	Микрови	1300bf uVizo-103
	Серийная модель	Модернизированная модель	Серийная модель	Модернизированная модель
Объективы	5/0,12; 10/	0,20; 20/0,35;50/0,60; 100/0,75	5/0, 10; 20/0, 4	5;63/0,85; 100/1,25ми
Цифровой масштаб 1 [×] цифровой масштаб 2 [×] цифровой масштаб 4 [×]	50, 100, 200, 500, 1000 100, 200, 400, 1000, 2000	50, 100, 200, 500, 1000 100, 200, 400, 1000, 2000 200, 400, 800, 2000, 4000	$63, 250, 800, 1250\\125, 500, 1600, 2500\\-$	63, 250, 800, 1250 125, 500, 1600, 2500 250, 1000, 3200, 5000
Методы исследования	Светлое поле. Темное поле Дифференциальный инте	е. Поляризованный свет. рференционный контраст	Светлое п	оле. Темное поле.
Наибольшее поле на объекте	2,6×	1,9 мм; диагональ 3,2 мм	$2,0{ imes}1,5~{ m mm}$; диагональ 2,5 мм
Видеосистема: матрица, монитор	CMOS, 1/2", 1,3 Мпкс VGA, 6,4", 640×480 пкс	CMOS, $1/2$ ", 3,2 M _{IIKC} VGA, 6,5", 1024×768 _{IIKC}	CMOS, 1/2", 1,3 Мпкс VGA, 6,4", 640×480 пкс	CMOS, 1/2", 3,2 Мпкс VGA, 6,4", 1024×768 пкс
Регулируемые параметры в режиме реального времени	"Яркость"; "Конл "Подсчет коли	грастность"; "Резкость"; "Множитель"; "Фон"; гчества элементов изображения"; "Указка"; "О	"Фильтр"; "Масштаб"; " пределение линейных ра	Стоп кадр"; "Оттенок"; змеров и площадей"
и функциональные режимы		"Насыщенность"; "Черно-белое изображение"; Определение угловых размеров; Создание "Альбомов" пользователя; Наложение на изображение "меток" в виде перекрестия, шкал, масштабного отрезка и др.		"Насыщенность", "Черно-белое изображение"; Определение угловых размеров; Создание "Альбомов" пользователя
Автоматические настройки		Баланс белого, заданный уровень яркости	изображения на монитој	e
Специализированные задачи	ļ	Анализ микроструктуры металлов и сплавов методом сравнения с изображениями эталонных шкал по ГОСТ 5639 и др.	doф.,	мула крови"
Сохранение данных		Карта памяти стандар	DTa SD	
	Ι	Встроенная карта памяти ("Внутренний диск"), 8 Гб	I	Встроенная карта памяти ("Внутренний диск"), 8 Гб
Внешний выход	USB 2.0 VGA, 640×480 пкс	USB 2.0 VGA, 1024×768 пкс; 2048×1536 пкс;	USB 2.0 VGA, 640×480 пкс	USB 2.0 VGA, 1024×768 пкс,
Источник света		Светодиод белого свечения, м	ющность 5 Вт	ZU48×1930 IIKC

Таблица 1. Технические характеристики микровизоров

Рис. 2. Фрагменты изображений миры с периодами 2,2; 1,8; 1,6 и 1,4 мкм, полученные на новом микровизоре проходящего света с объективом $10^{\times}/0,25$ при значениях параметров: цифровой масштаб 2[×], "Контрастность" K= 0, "Резкость" P = 0: а – с фильтром "RGB", б – в режиме черно-белого изображения.

Рис. 4. а, б – изображение растительной клетки, полученное с объективом 10[×]/0,25 при цифровом масштабе 2[×]; в, г – фрагмент изображения костного мозга, полученного с объективом 100[×]/1,25, при цифровом масштабе 2[×]; а, в – изображения получены на серийном микровизоре, б, г – на новом микровизоре.

Рис. 3. Фрагменты изображений миры с периодами от 2,2 до 1,4 мкм, полученные на новом микровизоре проходящего света с объективом $10^{\times}/0,25$ в режиме черно-белого изображения при цифровом масштабе 2^{\times} . а – при значениях параметров "Контрастность" K = 5, "Резкость" P = 0, б – K = 0, P = 10, в – K = 5, P = 10, г, д, е – графики изменения уровня сигнала для изображений а, б, в (по оси X – № пиксела, по оси Y – уровень сигнала I, значение контраста на частоте N рассчитано по формуле K(N) = $= I_{max} - I_{min}/I_{max} + I_{min}$).

миры на мониторе микровизора в центре поля зрения в режиме цифрового масштаба 2^{\times} – "пиксел-в-пиксел" [2]. В качестве объекта использовали аттестованные штриховые миры с периодом: 11,0; 5,5; 3,7; 2,8 и 2,2; 1,8; 1,6; 1,4 мкм.

Режим "Насыщенность", введенный в дополнение к режиму "Оттенок", принципиально иначе решает проблему приблизить по цветопередаче изображение в микровизоре к изображению, наблюдаемому в классическом микроскопе (рис. 4). Режим "Насыщенность" позволяет изменять степень чистоты – сочности цвета, выявлять тонкие цветовые нюансы изображения. Параметр "Насыщенность" изменяется в диапазоне ± 50 единиц. При положительных значениях – цвета более насыщенные, приближающиеся к монохроматическим, при отрицательных значениях – цвета более тусклые, слабые – "вымытые". Введение встроенной карты памяти расширяет возможности микровизора и позволяет пользователю создавать собственные "Альбомы" с архивными или эталонными изображениями.

В модели отраженного света введена возможность проведения "входного контроля" металлов и сплавов методом сравнения с эталонными шкалами.

Сравниваемые микровизоры имеют одни и те же оптические системы освещения и проекции изображения на матрицу, но различаются видеосистемами. Видеосистема с более высоким разрешением позволяет в большей степени использовать как возможности оптической системы микровизора, так и программные возможности "контрастирования" изображения. Расчетные и измеренные значения разрешающей способности приведены в табл. 2, 3. В табл. 2 значения предельных передаваемых частот N выбраны и определены как предельные, исходя из условия обеспечения динамически устойчивого разрешения, при котором $\mathbf{R}_{\text{матр}} \ge 3\alpha_{\text{матр}}$ или число Джонсона $n_0 \ge 3$, а значение контраста $\mathbf{K}_{\text{oc}}(\mathbf{N})$ не менее 0,16-0,3 [2]. В серийных моделях на малых и средних увеличениях при $n_0 = 3$ расчетные значения контраста $\mathbf{K}_{\text{oc}}(\mathbf{N}) = 0,3-0,4$, то есть числовая апертура оптической системы полностью не используется и при переходе на видеосистему с большим разрешением следует ожидать увеличения разрешения именно для этих увеличений.

На больших увеличениях во всех моделях оптическая система и видеосистема сбалансированы и работают на контрасте, предельно возможном для видеосистем.

Таблица 2.

Расчетные данные разрешающей способности для микровизоров проходящего света µVizo-103 с объективами										
Определяемые	5×/0,10 А`*=0,031 R _{об} =3,3 мкм		$10^{\times}/0,25$ A`=0,041 R _{oб} =1,3 мкм		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		63 [×] /0,85 А`=0,022 R _{об} =0,4 мкм		100 [×] /1,25 ми А` = 0,020 R _{об} = 0,3 мкм	
характеристики		для серийных и новых видеосистем с размерами пикселов а _{матр.} – а _{экр.} , мкм								
	5,2-203	3,2–129	5,2-203	3,2–129	5,2-203	3,2–129	5,2-203	3,2–129	5,2-203	3,2–129
Линейное увеличение до плоскости матрицы, V _{ос}	-3	,23	-6	,12	-12	2,27	-38	-38,50 -61,37		,37
Линейное увеличение до плоскости крана, V	-1	29	-2	245	-4	91	-15	540	-24	155
Разрешающая способность в плоскости объекта, R, мкм	5,0	4,0	2,7	1,8	1,3	1,0	0,	6	0,4	40
в плоскости матрицы, R _{матр} = RV _{ос} , мкм	16,0	13,0	16,7	10,8	15,6	11,6	22	,2	24	,4
в плоскости монитора R _{`экр} = RV, мкм	640	520	668	432	624	464	88	38	88	38
Предельная передаваемая частота $N = 1/R_{\text{матр}}^{\circ}$, лин/мм	63	77	60	92	64	86	4	5	4	1
Значения контраста К _{ос} (N)	0,3	0,2	0,4	0,2	0,3	0,2	0,	2	0,	2
Число Джонсона $n_0 = \mathbf{R}^{\prime}/\alpha$	3,0	4,1	3,2	3,4	3,0	3,6	4,3	6,9	4,7	7,6
		Уровень восприятия								
	Определение Распознаван			ние						

*A` – выходная числовая апертура оптической системы микровизора при смене объективов; А` = A_{ob}/V_{oc}

 $R_{o \delta}$ – расчетные данные разрешающей способности объективов; $R_{o \delta}$ = $0,61 \cdot 0,546/A_{o \delta}.$

Таблица 3.

Экспериментальные данные разрешающей способности для микровизоров проходящего света µVizo-103 с объективами								
	$5^{\times}/0,10$ A` = 0,031 R _{od} = 3,3 мкм		$10^{\times}/0,25$ A` = 0,041 R _{od} = 1,33 mkm		$20^{ imes}/0,45$ A` = 0,037 $ m R_{o6}$ = 0,74 MKM			
Определяемые характеристики	для серийных и новых видеосистем с размерами пикселов а _{матр.} -а _{экр.} , мкм							
	5,2–203	3,2–129	5,2–203	3,2–129	5 - 203	3,2–129		
Линейное увеличение до плоскости матрицы, V _{oc}	-3,23 -6,12			-12,27				
до плоскости экрана, "V"	-1	29	-245		-491			
Разрешающая способность в плоскости объекта, R, мкм	5,5	3,7	2,8	1,8	1,4	*≪1,4		
в плоскости матрицы, В` _{матр} = R V _{ос} , мкм	17,8	12,0	17,1	11,0	17,2	*		
в плоскости монитора R` _{экр} =R V", мкм	711	478	686	441	687	*		
Предельная разрешаемая частота N=1/R _{матр} , лин/мм	56	84	58	91	58	*		
* ¹ Расчетные значения контраста K(N)	0,32	0,14	0,40	0,18	0,29	*		
Число Джонсона n ₀	3,4	3,8	3,3	3,4	3,3	*		
$n_0 = \mathbf{K} / \alpha$	Уровень восприятия – "Определение"							

* – Предельное значение разрешающей способности выше, чем наименьшее значение периода штриховой миры, равное 1,4 мкм.

*¹ – Значения контраста К рассчитано как произведение расчетного значения контраста оптической системы K_{oc} и функции передачи модуляции матрицы $T_{matp} = \sin N \cdot \alpha_{matp.} / \pi \cdot N \cdot \alpha_{matp.}$

Таблица 4.

№ пп		Число Джонсона n ₀	
1	Обнаружение	Фиксируется появление объекта в поле зрения	2
2	Определение	Различается форма объекта и его ориентация	2,8
3	Распознавание	Классифицируется объект	8,0
4	Идентификация	Устанавливается тип объекта	12,8

Экспериментальные данные (табл. 3) подтверждают правильность расчета – наименьшее расчетное значение контраста, при котором штрихи миры на экране серийной и новой видеосистем наблюдали раздельно, равно соответственно 0,29–0,40 и 0,14–0,18.

Число Джонсона [3] – количество пикселов матрицы, соответствующее предельному разрешению в плоскости матрицы, характеризует уровень восприятия изображения. Пример значений чисел Джонсона приведен в табл. 4 (классический подход) и 5 (вероятностный подход). Таблицы составлены на основе многочисленных опытов, выполненных различными группами исследователей в различное время на различных приборах и могут отличаться. Вероятность распознавания объекта по его изображению может быть рассчитана по формуле, предложен-

Таблица 5.

Вероятность решения задачи	Обнару- жение	Распозна- вание	Идентифи- кация
1,0	6,0	18,0-24,0	36,0
0,95	4,0	12,0-16,0	24,0
0,80	3,0	9,0-12,0	18,0
0,50	2,0	6,0-8,0	12,0
0,30	1,5	4,5-6,0	9,0
0,10	1,0	3,0-4,0	6,0
0,02	0,5	1,5-2,0	3,0
0	0,0	0,0	0,0

Рис. 5. График вероятности распознавания объекта по его изображению, рассчитанной по формуле (1) для значений *n*₀ до 10.

Рис. 6. Частотно-контрастные характеристики, полученные расчетом (1), при испытании новой (2) и серийной (3) моделей микровизоров с объективом $10^{\times}/0,25$.

ной сотрудниками НИИТ Никитиным В.В. и Цицулиным А.К., следующим образом:

$$P(N) = 1 - \exp[-0.15(N-1)^2],$$

где N — количество ТВЛ по горизонтали или вертикали (минимальное из них) на изображении объекта, для нашего случая $N = n_0$.

График и таблица значений вероятности распознавания объекта по его изображению, рассчитанных по приведенной формуле для значений n_0 до 10, представлены на рис. 5.

Для значений числа Джонсона, определенных расчетным и экспериментальным путем (по данным табл. 2 и 3), вероятность распознавания объекта по его изображению при работе с объективами малых и средних увеличений составила P(N) = 0,6, с объективами больших увеличений – P(N) = 0,98.

Частотно-контрастные характеристики (ЧКХ) микровизоров и расчетная ЧКХ представлены на рис. 6.

Экспериментальные ЧКХ построены по данным обработки файлов с изображениями мир, полученными на серийном и новом микровизоре при одинаковых условиях (рис. 7).

При работе с объективами малых и средних увеличений измеренные и расчетные значения предельных разрешаемых частот совпали, разрешающая способность R на новом микровизоре, как и предполагалось, увеличилась в 1,6 раза. Контраст изображения на новом приборе на низких частотах вырос лишь в 1,1–1,2 раза, на средних и предельных частотах – в 1,6–2,0 раза (рис. 6, 7).

Предельная частота, которую можно различить при помощи регулярной структуры - матрицы, определяется критерием Найквиста-Котельникова [4]. Для серийных микровизоров частота Найквиста составляет 96 лин/мм (N` = 1/2·0,052), для новых моделей – 156 лин/мм (N` = 1/2·0,032), число Джонсона n₀ = 2,0. При этом система является динамически неустойчивой, так как возможность распознавания таких частот и контраст изображения зависят от фазы сигнала относительно регулярной структуры матрицы. На серийном микровизоре штрихи с периодом 2,2 и 1,8 мкм (рис. 7) при n₀ = 2,6 не разрешаются, тогда как на новом микровизоре эти частоты при $n_0 = 4,3$ и 3,5 разрешаются.

Порог стабильного динамически устойчивого разрешения, слабо зависящего от фазы, наступает тогда, когда изображения двух разрешаемых элементов объекта попадают на три и более

(б)

Рис. 7. Фрагменты изображений миры с периодами от 11,0 до 1,4 мкм, полученные с объективом $10^{\times}/0,25$ при значениях параметров: цифровой масштаб 2^{\times} , "Контрастность" K = 0, "Резкость" P = 0, Фильтр "RGB". а – на серийном микровизоре проходящего света, б – на новом микровизоре, в, г – графики изменения уровня сигнала для изображений а, б (по оси $X - N^{\circ}$ пиксела, по оси Y – уровень сигнала I, значение контраста на частоте N` рассчитано по формуле K(N) = $I_{max} - I_{min}/I_{max} + I_{min}$).

пикселов матрицы ($n_0 \ge 3,0$) [www.fotozoom. ru//2004/03/09].

При соблюдении условия $n_0 = R'/\alpha_M = 3,0$ предельные значения частот, которые можно различить с помощью сравниваемых видеосистем, должны быть 64 лин/мм (N` = 1/3·0,0052) и 104 лин/мм (N` = 1/3·0,0032); оптимальные значения выходной числовой апертуры оптической системы: A' = 0,020 - для серийных микровизоров и A' = 0,035 - для новых моделей; измеренные значения предельных частот, которые различаются с помощью сравниваемых видеосистем, 58 лин/мм и 91 лин/мм при значениях $n_0 = 3,5$ и $n_0 = 3,4$, соответствующих уровню восприятия изображения "Определение" с вероятностью распознавания объектов 0,6 (рис. 5).

В новом микровизоре повышение разрешающей способности происходит только для объективов с увеличением до 20[×]. При работе с объективами больших увеличений улучшается качество изображения, повышается четкость изображения за счет уменьшения дискретности изображения – увеличения числа Джонсона.

Кроме условия соблюдения частоты Найквиста в видеосистемах необходимо обеспечивать отсутствие заметной дискретности изображения объекта [5]. Оператор, наблюдающий изображение объекта на мониторе, не должен видеть дискретность монитора. При остроте зрения 1'-2' и расстоянии до экрана микровизора от глаз оператора не менее 250 мм размеры пикселов монитора должны быть не более 75-150 мкм.

Дальнейшая оптимизация качества изображения микровизора предполагает не только использование более совершенных матриц и мониторов, но и использование объективов, имеющих более высокие числовые апертуры и контраст на предельных для видеосистем частотах.

ЛИТЕРАТУРА

- Елкин А.В., Белашенков Н.Р., Лопатин А.И., Калинина Т.Ф. Микровизор // Патент России № 66893. 2007.
- 2. Белашенков Н.Р., Калинина Т.Ф., Лопатин А.И., Скобелева Н.Б., Тютрюмова Т.В. Микровизоры – новое поколение цифровых микроскопов // Оптический журнал. 2009. Т. 76. № 10. С. 52–57.
- Ллойд Дж. Системы тепловидения: Пер. с англ. / Под ред. А.И. Горячева. М.: Мир, 1978. 416 с.
- 4. Проектирование оптических систем / Под ред.
 Р. Шеннона и Дж. Вайанта. М.: Мир, 1983.
 250 с.
- 5. Волкова М.А., Натаровский С.Н., Скобелева Н.Б. Выбор линейного увеличения адаптера телеканала микроскопа // Оптический журнал. 2005. Т. 72. № 11. С. 58–62.