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Введение

По серии изображений, полученных с помо-
щью перемещающейся камеры, можно оцени-
вать трехмерную структуру снимаемой сцены, 
а также восстанавливать траекторию движе-
ния самой камеры, что может применяться в 
области компьютерного зрения, например, для 
навигации мобильных роботов внутри поме-
щений или системах дополненной реальности. 
Данная задача делится на два основных этапа. 
На первом этапе на паре изображений проводится 
выделение и сопоставление ключевых точек по 
их локальным инвариантным признакам, после 
чего по выделенным точкам выполняется ана-
лиз структуры наблюдаемой сцены. 

В последние годы решением задачи восста-
новления моделей перемещений камеры и объ-
ектов наблюдаемой сцены занимается широкий 
круг исследователей, однако большинство работ 
основано на включении в последовательность 
изображений только одной модели движения 
твердого тела: наблюдаемая сцена статична, а 
перемещается только наблюдатель, или, наобо-
рот, камера – статична, а в наблюдаемой сцене 
присутствует только один движущийся объект. 

Проблема  восстановления  структуры сцены  и 
перемещений камеры при названных условиях 
хорошо исследована, и методики ее решения до-
статочно подробно описаны в работах [1–3].

В этой связи представляет интерес более об-
щий случай динамической сцены, когда в ней 
присутствуют независимо движущиеся объекты, 
а сама камера также совершает некоторые пере-
мещения. Существует алгебраический подход 
к решению данной проблемы, основанный на 
полиномиальном представлении и обобщенном 
анализе  главных  компонентов  (GPCA)  [4, 5], 
однако данные методы не слишком устойчивы 
к выбросам, возникающим в результате некор-
ректного сопоставления точек на паре изобра-
жений, и с увеличением числа моделей движе-
ния резко возрастает количество вычислений.

Альтернативой  алгебраическому  подходу 
является геометрический подход, основанный 
на уравнениях эпиполярной геометрии. В рабо-
те [6] представлен метод, позволяющий разделять 
ключевые точки на кластеры, соответствующие 
независимо движущимся объектам, движение 
которых может описываться моделями с разным 
числом параметров. Здесь применяется байе-
совский подход к решению данной задачи. При 
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сравнении моделей с разным числом параметров 
критерии  наподобие  СКО  недостаточны  для 
оценки их качества. Поэтому помимо ошибок 
описания в критерий качества модели включа-
ется ее сложность, т. е. число параметров, что 
задает априорные вероятности модели.

В том случае, когда в наблюдаемой сцене при-
сутствуют  независимо движущиеся объекты, 
приходится выбирать модель, которая наилуч-
шим образом описывает распределение набора 
точечных соответствий между имеющимися 
моделями движения. Можно считать, что пере-
мещения каждого объекта описываются отдель-
ной моделью с фиксированным числом параме-
тров, что позволяет сравнивать модели исходя 
из  ошибки (например, среднеквадратического 
отклонения), с которой они описывают точеч-
ные соответствия на объектах. Таким образом, 
в рамках построения параметрических моделей 
движения необходимо найти оптимальное рас-
пределение выделенных точечных признаков по 
кластерам, соответствующим отдельным моде-
лям, которое минимизирует эти невязки.

В данной работе критерий, по которому при-
нимается решение о  принадлежности точки к 
отдельному кластеру, описываемому своей мо-
делью движения, представляется в виде суммар-
ного числа битов, необходимого для описания 
параметров  модели и возникающих  невязок 
между точечными соответствиями на паре изо-
бражений. Данный подход  характеризуется 
принципом  минимальной  длины  описания 
(МДО) [7] применительно к выбору модели дви-
жения. Оптимальным распределением точеч-
ных соответствий по кластерам считается то, 
которое минимизирует суммарную длину опи-
сания всех выделенных моделей.

В  работе  [8]  принцип минимизации длины 
описания применен к выбору моделей движения 
на серии изображений при условии перспектив-
ной проекции, где перемещение каждого объ-
екта описывается существенной матрицей [1, 2]. 
Предложенное решение основывается на произ-
вольных выборках ключевых опорных точек на 
паре изображений, после чего точки разделяются 
по кластерам и отслеживаются на последующих 
изображениях в серии.

В настоящей статье рассматривается при-
менение принципа МДО для решения задачи 
нахождения пространственных преобразований 
между наборами точек на паре изображений 
динамической сцены. На основе принципа МДО 
вводится критерий, позволяющий разделить 
массив соответствующих точек на кластеры, 

каждый из которых описывается своей матрицей 
преобразования и характеризует отдельный дви-
жущийся объект наблюдаемой сцены.

Модели преобразования точек 
на паре изображений

Точка на плоскости первого изображения 
может быть представлена в виде вектора-столбца 
xi = (xi, yi)

T, где xi, yi – координаты по оси абсцисс 
и ординат. Cоответственно отождествленная с 
ней точка на втором изображении будет записы-
ваться как x′i = (x′i, y′i)T. Для удобства расчетов 
вводится представление точки  в  однородных 
координатах [1]. Точка xi = (xi, yi)

T лежит на не-
которой линии l = (a, b, c)T в плоскости изобра-
жения, если выполняется равенство ax + by +
+ c = 0, которое может быть записано в виде ска-
лярного произведения векторов (x, y, 1)(a, b, c)T =
= (x, y, 1)l = 0. Можно заметить, что для любого 
ненулевого k и линии l равенство (kx, ky, k)l = 0 
будет выполняться, если (x, y, 1)l = 0. Таким 
образом, точка на изображении с координатами 
(x, y) может описываться произвольным одно-
родным вектором x = (x1, x2, x3)T, т. е. (x, y) =
= (x1/x3, x2/x3).

Предположим, что задан набор из N опорных 
точек xi = (xi, yi, 1)T на плоскости первого изо-
бражения и соответствующий ему набор из N 
точек x′i = (x′i, y′i, 1)T на втором изображении. 
Пусть также задано множество некоторых пре-
образований, переводящих точки с плоскости 
первого изображения на плоскость второго изо-
бражения {Tm(x, pm)}M

m = 1, где рm – вектор пара-
метров преобразования m-го класса, а М – общее 
количество классов преобразований. 

В качестве классов преобразований рассмат-
риваются класс  аффинного  преобразования и 
класс  преобразований  перспективной проек-
ции,  которые описываются фундаментальной 
матрицей [1, 2]. A priori неизвестно, каким из 
данных преобразований можно описать перенос 
точек между первым и вторым изображениями 
в паре. Также заранее неизвестно, сколько дви-
жущихся объектов может присутствовать в на-
блюдаемой сцене. Помимо этого, в наборах точек 
предполагается наличие некоторой погрешности 
в задании координат, а также ложных соответ-
ствий, ввиду возможных ошибок в процессе со-
поставления.

При представлении точек на изображении в 
однородных координатах рассматриваемые пре-
образования описываются матрицей из 3×3 эле-
ментов.
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Аффинное преобразование точек имеет вид 
x′ = HAx, где HA – матрица аффинного преоб-
разования. В развернутом виде его можно пред-
ставить как

1 2 3

4 5 6

1 0 0 1 1
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                (1)

Данный  вид преобразования представляет 
собой комбинацию из преобразования поворота 
в сочетании с анизотропным масштабировани-
ем (коэффициенты hAi

 в первых двух столбцах 
матрицы HA) и последующим переносом (коэф-
фициенты hAi

 в третьем столбце матрицы HA). 
Модель аффинного преобразования между точ-
ками первого и второго изображений может 
рассматриваться в том случае, когда глубина 
 наблюдаемой сцены мала по сравнению с расстоя-
нием до камеры. Как видно из выражения (1), 
аффинное преобразование имеет шесть независи-
мых параметров, а одна пара отождествленных 
точек задает два уравнения относительно эле-
ментов hAi

, поэтому для нахождения матрицы HA 
необходимо как минимум три пары точек. Если 
имеется более трех пар точек, то задача может 
быть решена методом наименьших квадратов.

В более общем случае перспективной про-
екции взаимосвязь отождествленных опорных 
точек на паре изображений может быть описана 
фундаментальной матрицей F, которая является 
алгебраическим представлением эпиполярной 
геометрии [1, 2]. 

Пусть имеется пара изображений сцены, сня-
той с разных ракурсов (рис. 1). Точка Х на на-
блюдаемой сцене проецируется в точки х и х′ на 
первом и втором изображении соответственно 
и вместе с центрами проекций камеры С и С′ 
образует эпиполярную плоскость π. Эпиполяр-
ная плоскость пересекает плоскость каждого 
изо бражения в эпиполярных линиях l и l′ [1]. 
Таким образом, для каждой точки х на одном 
изобра жении существует соответствующая ей 
эпиполярная линия  на  другом изображении. 
Любая точка х′ на втором изображении, соот-
ветствующая точке х, должна лежать на эпипо-
лярной линии l′.

В  отличие от  аффинного  преобразования, 
фундаментальная матрица задает преобразова-
ния из двумерного пространства в одномерное, 
иными словами, точка на первом изображении 
переносится не в отдельную точку на втором 
изображении, а на эпиполярную линию l′ = Fx. 
Базовым свойством фундаментальной матрицы 
является то, что для любого точечного соответ-

ствия на паре изображений х ↔ х′ она удовлет-
воряет следующему условию [1, 2]:

T 0.′ =x Fx                                    (2)

Соотношение (2) дает возможность определить 
фундаментальную матрицу  без использования 
параметров камеры, т. е. только с помощью 
точечных соответствий на паре изображений. 
Фундаментальная матрица имеет ранг 2 и вклю-
чает семь независимых элементов. Каждая пара 
отождествленных точек задает одно уравнение 
относительно элементов матрицы F, при нало-
жении дополнительного условия на вырожден-
ность фундаментальной матрицы (detF = 0) она 
может быть вычислена по семи парам отожде-
ствленных точек. Методы вычисления фунда-
ментальной матрицы подробно описаны в рабо-
тах [1, 2].

Кластеризация точек 
по моделям преобразований

Согласно принципу минимальной длины опи-
сания оптимальной моделью должна считаться 
та,  которая минимизирует суммарную длину 
описания модели и данных, закодированных с 
помощью данной модели. Таким образом, для 
того чтобы применить принцип МДО к задаче 
кластеризации отождествленных точек в соот-
ветствии с их моделями движения, необходимо 
оценить суммарную длину описания кластеров 
точек для каждого класса преобразований. Для 
произвольного преобразования соотношение 
между координатами отождествленных точек 
может быть записано в виде x′i = Tm(xi, pm) + εi, 
где pm – вектор параметров модели преобразо-
вания m-го класса, а εi – векторы невязок (i =
= 1, …, Nk, где Nk – номер ключевой точки в k-м 
кластере). Векторы невязок должны кодиро-
ваться по отдельности таким образом, чтобы была 
возможность получить координаты точки x′i по 

Рис. 1. Эпиполярная геометрия.

X

x x′

l l′
C C′
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имеющимся xi, pm и εi. Таким образом можно 
оценить длину  описания  координат  точек  на 
втором изображении при условии, что коорди-
наты соответствующих точек на первом изобра-
жении считаются заданными а priori. То есть 
для расчета длины описания отдельного класса 
преобразования необходимо оценить

L • m – длину описания вектора параметров 
модели каждого класса pm,

L • ind – длину описания номеров отождеств-
ленных ключевых точек, которые принадлежат 
к рассматриваемому кластеру,

L • e – длину описания вектора невязок εi.
При оценке длины описания вектора пара-

метров преобразования можно руководство-
ваться  минимальным количеством  точечных 
соответствий, которое необходимо для его вы -
числения. Как отмечалось выше, в случае аф-
финного преобразования необходимо три пары 
точек, которые задают шесть уравнений от-
носительно параметров преобразования, а для 
фундаментальной матрицы достаточно семи пар 
соответствий, которые задают семь уравнений. 
Помимо этого для фундаментальной матрицы 
необходимо учитывать еще один дополнитель-
ный параметр, описывающий позицию точки с 
нулевой диспаратностью на эпиполярной линии. 
Каждый компонент вектора параметров должен 
быть описан некоторым числом битов. В общем 
случае точность данного описания зависит от 
количества элементов данных, которые исполь-
зуются в модели. Стандартная оценка [9] для 
длины описания вектора параметров p, состоя-
щего из np элементов, при имеющихся N точках 
в кластере будет иметь следующий вид:

22
log .p

k
n

L N=p  
                        (3)

В свою очередь номера отождествленных клю-
чевых точек в кластере могут быть описаны как 

ind 2log ,kN
NL C=                          (4)

ввиду того, что число различных вариантов фор-
мирования кластера, состоящего из Nk точек, 
равно числу сочетаний из N по Nk.

Длина описания невязок зависит от класса 
преобразования.  Предположим,  что  в  случае 
аффинного преобразования компоненты вектора 
εi независимы и являются равномерно распре-
деленными. В таком случае длину описания не-
вязок можно оценить следующим образом:

Lε = 2Nklog2σ|ε|/ 2,                       (5)

где σ|ε|/ 2  – значение среднеквадратичного откло-
нения невязок по оси абсцисс и ординат – εx и εy.

В случае фундаментальной матрицы можно 
охарактеризовать невязки только относительно 
принадлежности точки к эпиполярной линии.

Тогда, для того чтобы описать координаты 
точки на изображении, необходимо описать ее 
отклонения от эпиполярной линии εl и ее поло-
жение вдоль этой линии εa. Отклонения от эпи-
полярной линии могут иметь малые значения, 
в то время как положения точки на самой линии 
могут очень сильно отличаться из-за различной 
глубины сцены. Поэтому данные невязки будут 
иметь существенно различные распределения. 
Положение на эпиполярной линии можно опи-
сать как смещение относительно некоторого 
среднего  значения  (например,  вычисленного 
через гомографию), которое также может рас-
сматриваться как точка нулевой диспаратности. 
Данную опорную точку необходимо включить 
в  модель  в  качестве  дополнительного  пара-
метра, поэтому длина описания невязок выра-
зится как

Lε ( )2 2log log .k l aN σ σ= +
                 

  (6)

Выбор между моделями движений различных 
классов может осуществляться по суммарной 
длине описания

indL L L= + +p Lε.                        (7)

Для выполнения кластеризации необходима 
оценка выигрыша в длине описания, получае-
мого при различных моделях движения. Пред-
полагается,  что  координаты точек, которые 
не подходят под  описание  выбранной  модели, 
являются независимыми и равномерно распре-
деленными, поэтому каждая координата зада-
ется 2log2S битами, где S – линейный размер 
изображений. Общий выигрыш в битах на сим-
вол для кластера из Nk точек будет

22 log .kN S L−                             (8)

Точки должны быть включены в кластер, если 
это  дает  максимальный  положительный вы-
игрыш в длине описания.  Критерий  качества 
кластеризации будет иметь вид

( )tot 2
1
2 log ,

K

k k
k

L N S L
=

= −∑
 

                  (9)

где Lk – длина описания k-го кластера из точек, 
описываемых выбранной моделью. Ввиду воз-
можных выбросов в виде некорректно отождеств-
ленных пар точек, необходимо обязательно учи-
тывать выигрыши в длине описания при добавле-
нии точки в кластер.
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Таким образом, задача заключается в выборе 
распределения массива точечных соответствий 
по кластерам, описывающимся отдельной моде-
лью преобразования, при котором значение сум-
марной длины описания было бы максимально. 
Так как предполагается, что среди выделенных 
соответствий могут присутствовать ложные 
пары точек, был применен следующий алгоритм, 
позволяющий исключать выбросы в процессе 
кластеризации.

На первом  шаге  из  массива соответствий 
N делается  минимальная  произвольная  вы-
борка из  n точек,  которые необходимы  для 
оценки  параметров  рассматриваемых  моде-
лей. Так  как  для  оценки  фундаментальной 
матрицы требуется больше точек, чем для аф-
финного преобразования, то в данной работе 
считалось, что n = 7. Для повышения вероят-
ности принадлежности точек в выборке одно-
му объекту брались только те соответствия, 
которые на обоих изображениях находятся 
друг от друга в пределах некоторого порого-
вого расстояния t. После чего по полученной 
выборке оценивался вектор параметров каж-
дого класса преобразований (матрица аффин-
ного преобразования рассчитывалась по методу 
наименьших  квадратов, фундаментальная 
матрица рассчитывалась по 7-точечному ал-
горитму [1]). Далее, исходя из полученных 
на данном этапе параметров преобразований 
и сделанной выборке, определялись невязки, 
которые образуются в рамках данного класса, 
и определялось число бит для описания каждой 
модели. 

На следующем этапе работы делается проход 
по всем оставшимся отождествленным точкам 
и для каждой из них оценивается степень ее со-
ответствия выделенным на предыдущем шаге 

моделям  перемещения.  Для этого  исходные 
параметры модели пересчитываются с учетом 
выбранной точки и с учетом вносимых новой 
точкой погрешностей переоценивается длина 
описания модели. Если при добавлении точки 
получается выигрыш в длине описания, то дан-
ная точка приписывается к кластеру, описываю-
щемуся этой моделью, и исключается из даль-
нейшего рассмотрения. 

В итоге, по окончании проходов по массиву 
отождествленных точек получаем наборы класте-
ров, каждый из которых характеризуется своей 
длиной описания в виде некоторого числа бит. 
Оптимальным считается то распределение то-
чек по кластерам, которое имеет наиболее оп-
тимальное значение критерия (9).

Экспериментальная проверка

Представленный метод кластеризации ото-
ждествленных точек по различным моделям 
пространственного преобразования был экс-
периментально проверен на реальных изобра-
жениях сцены внутри помещений. На первом 
этапе выполнялась проверка критерия для вы-
бора оптимальной модели движения отдельно 
от задачи кластеризации точек. Для этого ис-
пользовались изображения статичной сцены, 
снятой с разных ракурсов. В результате было 
подтверждено, что, в рамках решения данной 
задачи, выведенный критерий минимальной 
длины описания позволяет проводить выбор мо-
дели с соответствующей сложностью, несмотря 
на различные виды проективных искажений. 
В частности, на рис. 2 изображен пример выбора 
менее сложной модели, а на рис. 3 – пример вы-
бора более сложной модели преобразования. На 
рис. 2 приведена пара изображений, полученных 

(а) (б)

Рис. 2. Исходное изображение (а) и изображение после поворота камеры (б) с выделенными ключевыми 
точками, смещение которых описывается аффинным преобразованием.
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при повороте камеры. Оптимальный набор точек 
для моделей, которые описываются аффинным 
преобразованием и фундаментальной матрицей, 
приведен на рис. 2б. В данном примере аффин-
ная модель дает выигрыш в 1085 битов, в то вре-
мя как модель фундаментальной матрицы обе-
спечивает выигрыш в 1070 битов. Таким обра-
зом, может быть выбрана более корректная мо-
дель на основе аффинного преобразования.

На рис. 3 приведены изображения, получен-
ные при перспективной проекции наблюдаемой 
сцены. В данном случае оптимальный набор то-
чек для аффинной модели отличается от набора 
точек для модели на основе фундаментальной 
матрицы. Набор точек на рис. 3в дает выигры-
ши в 281 бит для аффинного преобразования и 
269 битов для фундаментальной матрицы. В то же 
время набор точек на рис. 3г дает выигрыши в 
278 бит для аффинной матрицы и 333 бита для 
фундаментальной  матрицы.  Таким образом, 
модель на основе фундаментальной матрицы мо-
жет быть выбрана в качестве оптимальной для 
данной пары изображений, так как модель аф-
финного преобразования описывает меньшее 
количество отождествленных точек.

На втором этапе осуществлялась проверка 
алгоритма кластеризации на изображениях ди-
намических сцен, полученных при перемещении 
камеры. На рис. 4 приведены пары изображений, 
на которых имеются движущиеся объекты, и 
результаты процедуры кластеризации для этих 
изображений.

Заключение

В работе было показано, что на основе прин-
ципа минимальной длины описания можно осу-
ществлять выбор между семействами простран-
ственных преобразований, которые содержат 
различное число параметров (рассматривались 
модель  аффинного  преобразования  и модель 
перспективной проекции, которая описывается 
фундаментальной матрицей), а также проводить 
разделение отождествленных ключевых точек 
на кластеры в соответствии с различными моде-
лями движения.

Предложенный критерий качества класте-
ризации на основе принципа МДО позволяет 
избежать влияния выбросов в виде некорректно 
отождествленных точек и подобрать модель про-

(а) (б)

(в) (г)

Рис. 3. Пара изображений (a, б) и отождествленные ключевые точки со смещениями, описываемыми аф-
финным преобразованием (в) и фундаментальной матрицей (г).
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странственного преобразования для каждого 
выделенного кластера с наименьшими погреш-
ностями. Работа предложенного алгоритма кла-
стеризации, который оптимизирует выведенный 
критерий качества, была проверена на серии 
тестовых изображений. Полученные результаты 
подтверждают корректность предложенного под-
хода к решению описанной задачи.

Дальнейшие  исследования  должны быть 
направлены на решение проблемы поиска опти-
мальной кластерной гипотезы ввиду того, что 
использование произвольных выборок, позво-
ляющих избежать локальных экстремумов в це-
левой функции, может привести к уменьшению 
скорости кластеризации.
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Рис. 4. Результаты кластеризации отождествленных точек по различным моделям движения.


