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Аннотация
Предмет исследования. Предмет исследования — количественные и качественные особенно-

сти комплексообразования наночастиц металлического серебра и фталатов. Целью данной ра-
боты являлось определение условий формирования устойчивых комплексов наночастиц серебра 
с дибутилфталатом в водном растворе. Для достижения цели проведён полный цикл сравнитель-
ных исследований серебряных наночастиц от синтеза до установления возможности связывать 
дибутилфталат для дальнейшего создания на их основе доступного сенсора для определения 
различных фталатов в воде. Методы. Синтез наночастиц, модификация их поверхности нукле-
отидами, а также соединение наночастиц с фталатами проводились химическими методами. 
Для исследования взаимодействия серебряных наночастиц с каждым компонентом органо-не-
органического комплекса, а именно цитратом натрия (далее цитрат), уридин-5′-трифосфатом 
(далее уридин или УТФ), ионами меди (Cu2+) и дибутилфталатом (ДБФ) применялись методы 
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оптической спектроскопии и просвечивающей электронной микроскопии. Основные результа-
ты. Синтезированы наночастицы металлического серебра с использованием четырёх агентов, 
безопасных для человека, выступающих одновременно в роли восстановителя и стабилизатора 
(цитрат, полиэтиленгликоль, поливинилпирролидон, экстракт апельсина). Для дальнейшего 
применения в качестве сенсоров фталатов по параметрам стабильности и диапазону методов ис-
следования были выбраны наночастицы, синтезированные с помощью цитрата натрия. Показано 
изменение лигандной оболочки наночастиц серебра молекулами уридина, а также образование 
химических связей между ними и фталатом с участием ионов меди. Впервые получены спектры 
комбинационного рассеяния и изображения просвечивающей электронной микроскопии ком-
плексов Ag/УТФ-Cu2+-ДБФ, подтверждающие химическое связывание серебряных наночастиц 
и фталатов. Найдено оптимальное молярное соотношение наночастиц Ag/УТФ и ионов меди 
в растворе для последующего процесса комплексообразования. Практическая значимость. Впер-
вые показано образование комплексов между дибутилфталатом и модифицированными наноча-
стицами серебра в отсутствии спирта и каких-либо буферных растворов. Обнаружение фталатов 
с помощью наночастиц серебра представляет собой перспективную технологию создания простого 
наносенсора, обладающего дополнительно плазмонными и бактерицидными свойствами. Кроме 
чрезвычайно актуального сегодня экологического значения исследование гибридных систем на 
основе наночастиц Ag вносит вклад в развитие методов пассивации поверхности металлических 
наночастиц. В широком смысле проведённые исследования представляют интерес для развития 
технологий сенсорного детектирования органо-неорганических соединений.

Ключевые слова: плазмонные наночастицы серебра, наносенсоры дибутилфталата в жидких 
средах, спектры комбинационного рассеяния, просвечивающая электронная микроскопия, мо-
дификация поверхности, уридин-5′-трифосфат, ионы двухвалентной меди
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Abstract
Subject and purpose of the study. The subject of the study is the quantitative and qualitative 

features of the complex formation of nanoparticles of metallic silver and phthalates. The purpose of 
this work was to determine the conditions for the formation of stable complexes of silver nanoparticles 
with dibutyl phthalate in an aqueous solution. To achieve the goal a full cycle of comparative studies 
of silver nanoparticles has been carried out from synthesis to establishing the possibility of binding 
dibutyl phthalate for further creation of an accessible sensor based on them for determination of 
various phthalates in water. Methods. Chemical methods were used for the synthesis of nanoparticles, 
the modification of their surface with nucleotides, and the connection of nanoparticles with 
phthalates. To study the interaction of silver nanoparticles with each component of organo-inorganic 
complex, namely sodium citrate (hereinafter referred to as citrate), uridine-5′-triphosphate 
(hereinafter referred to as uridine or UTP), copper ions (Cu2+) and dibutyl phthalate (DBP), methods 
of optical spectroscopy and transmission electron microscopy were used. Main results. Metallic silver 
nanoparticles have been synthesized using four agents safe for humans, acting simultaneously as 
a reducing agent and stabilizer (citrate, polyethylene glycol, polyvinylpyrrolidone, orange extract). 
Nanoparticles, synthesized using sodium citrate, were selected for further use as phthalate sensors 
in terms of stability parameters and range of research methods. The change of the silver nanoparticles’ 
ligand shell by uridine molecules and the formation of chemical bonds between them and phthalate 
involving copper ions have been shown. Raman spectra and transmission electron microscopy images 
of Ag/UTP-Cu2+-DBP complexes were obtained for the first time, confirming the chemical bonding of 
silver nanoparticles and phthalates. The optimal molar ratio of Ag/UTP nanoparticles and copper ions 
in solution for the subsequent process of complex formation has been found. Practical significance. 
The formation of complexes between dibutyl phthalate and modified silver nanoparticles has been 
shown for the first time in the absence of alcohol and any buffer solutions. The detection of phthalates 
using silver nanoparticles is a promising technology for creating a simple nanosensor with additional 
plasmonic and antibacterial properties. Besides the extremely important ecological significance of the 
study of hybrid systems based on Ag nanoparticles, it also contributes to the development of methods 
for passivation of the surface of metal nanoparticles. In a broad sense, the studies carried out are 
of interest for the development of sensor detection technologies for organic-inorganic compounds.

Keywords: plasmonic silver nanoparticles, dibutyl phthalate nanosensors in liquid media, Raman 
spectra, transmission electron microscopy, surface modification, uridine 5'-triphosphate, divalent 
copper ions
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ВВЕДЕНИЕ
Известно, что наибольшую опасность для че-
ловека представляют не сами микрочастицы 
пластика, а продукты их разложения, в осо-

бенности фталаты. Фталаты обладают мута-
генным и эмбриотоксическим действием, раз-
рушают эндокринную систему (в частности, 
как мимики эстрогена, фталаты угнетают 
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продуктивность у-хромосом у мужчин и сдви-
гают фертильный возраст у женщин), они спо-
собны накапливаться в организме, облада-
ют канцерогенными свойствами [1, 2]. Фтала-
ты легко выделяются в окружающую среду из 
пластика под воздействием тепла, ультрафио-
лета и спирта [3–5]. 

Существующие сегодня методы обнаруже-
ния фталатов с помощью жидкостной хромо-
тографии и тандемной масс-спектроскопии 
доступны малому числу лабораторий, сложны 
в обслуживании и имеют высокую погреш-
ность по сравнению с оптическими методами 
исследования [6]. Переход к использованию 
наноструктур необходим для миниатюризации 
приборной базы. Преимуществом использова-
ния наночастиц (НЧ) серебра Ag в методах об-
наружения фталатов является их доступность 
широкому кругу исследователей. Кроме того, 
наночастицы серебра известны своей антибак-
териальной активностью, благодаря чему, их 
можно использовать в экологических и меди-
цинских целях. На плазмонную частоту метал-
лических НЧ сильно влияют их форма, размер 
и диэлектрическая проницаемость окружаю-
щей среды. На сегодняшний день продолжают 
развиваться такие технологии, как стабилиза-
ции НЧ серебра в водной среде, так и сенсорно-
го детектирования с их помощью. 

Целью данной работы являлось определе-
ние условий формирования устойчивых ком-
плексов наночастиц серебра с дибутилфтала-
том в водном растворе. Для достижения цели 
решался комплекс задач: проводилось сравне-
ние физико-химических свойств НЧ металли-
ческого серебра, синтезированных и стабили-
зированных различными органическими ве-
ществами, безопасными для человека (поли-
винилпирролидон и полиэтиленгликоль [7–9], 
цитрат натрия и экстракт апельсина [10, 11]), 
модифицировались оболочки наиболее под-
ходящих НЧ, подбирались дополнительные 
химические агенты и их мольные отношения 
для дальнейшего обнаружения дибутилфта-
лата в водных средах, измерялись морфоло-
гия и спектры комбинационного рассеяния 
полученных комплексов.

МАТЕРИАЛЫ И МЕТОДЫ
Синтез наночастиц металлического серебра 
осуществлялся химическим методом. Источ-

ником серебра служил нитрат серебра AgNO3. 
В качестве восстановителей ионов Ag+ и ста-
билизаторов металлических наночастиц Ag 
использовались поливинилпирролидон (ПВП) 
(Mw = 1,3106; Sigma Aldrich), полиэтилен-
гликоль (ПЭГ) (Mw = 8103; Sigma Aldrich), 
цитрат натрия (ООО «Бережь»), экстракт 
апельсина.

Синтез с помощью ПВП 
Первоначально были приготовлены раство-
ры с различным мольным соотношением 
[AgNO3]/[ПВП], из которых практическое зна-
чение имело следующее Ag: ПВП около 3000:1 
(здесь  — количество молей вещества). 8 мл 
0,8% раствора AgNO3 и 5 мл 5% раствора ПВП 
перемешивались с помощью магнитной ме-
шалки при температуре 80–90 С. Через 4 мин 
после начала синтеза бесцветный раствор стал 
жёлтым, что указывало на процесс зарожде-
ния НЧ серебра [12]. Длительность синтеза 
при нагревании составила 25 мин.

Синтез с помощью ПЭГ
Для синтеза наночастиц с помощью ПЭГ-вос-
становителя использовали 2 мл 5% водного 
раствора AgNO3 и 4 мл 5% водного раствора 
ПЭГ. Предварительно водный раствор ПЭГ пе-
ремешивали на магнитной мешалке при ча-
стоте 1000 об/мин в течение 60 мин. Смесь 
полученных растворов нагревали до 50 С. 
Бесцветный раствор приобрёл жёлтый цвет 
примерно через 11 мин. Длительность синтеза 
при нагревании составила около 15 мин.

Синтез с помощью экстракта апельсина
Основную роль в восстановлении солей се-
ребра с последующим образованием наноча-
стиц металлов с помощью растительных экс-
трактов играют растительные полифенолы 
[10, 11]. Экстракт апельсина получали сле-
дующим образом: 4 г цедры апельсина зали-
вали 40 мл воды и перемешивали на водя-
ной бане в течение 3 мин при температуре, 
близкой к кипению. Полученную суспензию 
пропускали через фильтровальную бумагу. 
Для получения НЧ Ag смешивали 1 мл экс-
тракта апельсина (экстракт апельсина содер-
жит лимонен: в апельсине содержание эфир-
ного масла 1,5–2%; содержание лимонена 
в апельсиновом эфирном масле 92–95%) и 40 мл 
1%-го раствора AgNO3 при температуре 85 С. 
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Длительность синтеза НЧ составляла около 
60 мин.

Синтез с помощью цитрата натрия
50 мкл водного раствора аскорбиновой кислоты 
с концентрацией 0,1 мМ растворяли в 47,5 мл 
воды при 100 С с последующим кипячением 
в течение 1 мин. Далее смешивали 1 мл 1%-го 
раствора цитрата натрия и 0,25 мл 1%-го рас-
твора AgNO3 и 1,25 мл воды. После 5-минут-
ной выдержки при комнатной температуре 
в кипящий водный раствор аскорбиновой кис-
лоты вносили смесь растворов цитрата натрия 
и AgNO3 [13]. Длительность синтеза при 90 С 
составила 60 мин.

Во всех экспериментах приготовленные 
золи подвергали двухстадийному центрифу-
гированию на установке Microspin 12 фирмы 
Biosan для отбора наночастиц наиболее одно-
родного размера. Некоторые параметры гото-
вых золей с наночастицами серебра сведены 
в табл. 1.

Седиментационная устойчивость золей 
оценивалась по изменению внешнего вида зо-
ля (цвет, прозрачность), изменению разброса 
размеров наночастиц, по изменению положе-
ния плазмонного пика поглощения НЧ.

Для измерения спектров поглощения образ-
цов использовался спектрофотометр Thermo 
Scientific Multiskan GO (США), работающий 
в УФ и видимом диапазоне. Двухугловой ана-
лизатор размеров частиц и молекул Zetasizer 
Nano ZS (Malvern Instruments Ltd., Малверн, 
Великобритания) использовался для измере-
ния гидродинамического диаметра, прово-
димости и электрокинетического потенциала 

(-потенциала) наночастиц Ag. Морфологию 
НЧ Ag и их комплексов с дибутилфталатом 
определяли с помощью просвечивающего элек-
тронного микроскопа (ПЭМ) Libra 200FE (Carl 
Zeiss, Германия). При ПЭМ-измерениях образ-
цы предварительно наносились на сетку с тон-
кой углеродной плёнкой. Органическую обо-
лочку НЧ серебра удаляли в аргоновой камере 
NanoClean Model 1070 Fischione.

Спектры комбинационного рассеяния (КР) 
измеряли на спектрометре Horiba Jobin-Yvon 
LabRAM HR800, оснащённом лазерным ис-
точником накачки с длиной волны 532 нм. 
Оптическая система позволяла фокусиро-
вать лазерный луч в пятно диаметром око-
ло 1 мкм с оптической мощностью около 
6 мВт. Измерения проводились в диапазоне 
от 50 до 2000 см–1. Во время измерений те-
стовые образцы наносились на предметное 
стекло с помощью дозатора “Thermo Fisher 
Scientific”.

Для модификации поверхности наноча-
стиц серебра с целью их связывания с фтала-
тами использовали водные растворы уридин-5′-
трифосфата (производства ООО «ДНК-Синтез», 
Москва), а также хлорид меди CuCl22H2O 
(ГОСТ 4167-74, ООО «Нева Реактив»). Дибутил-
фталат (дибутилбензол-1,2-дикарбонат, DBP — 
англ., C6H4(COOC4H9)2 производства ООО «Нева 
Реактив») — дибутиловый эфир фталевой кис-
лоты, был выбран в качестве определяемого 
агента, как один из наиболее опасных для здо-
ровья человека. Его наличие в пищевых про-
дуктах запрещено, в частности, технически-
ми регламентами Евразийского таможенного 
союза [14].

Таблица 1. Молярная концентрация веществ и стабильность НЧ Ag в золях 
Table 1. Molar concentration of substances and stability of Ag NPs in sols

Вещество 
восстановитель-

стабилизатор

Молярная 
концентрация 

AgNO3, мM

Молярная концентрация 
вещества восстановителя-

стабилизатора, мM

Молярное отношение 
AgNO3/Стабилизатор

Стабильность 
НЧ серебра 

ПВП 46,00 0,015 3000 14 дней

ПЭГ 150,00 4,200 38 2 часа

Экстракт апельсина 93,00 0,250* 372 2 месяца

Цитрат натрия 0,46 0,780 0,6 2 месяца

*указана молярная концентрация в пересчёте на лимонен.

* the molar concentration is indicated in terms of limonene.
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РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Характеризация наночастиц Ag
Сравнительные спектры поглощения синте-
зированных наночастиц серебра, стабилизи-
рованных четырьмя различными агентами, 
приведены на рис. 1. 

Ионы Ag+ восстанавливаются при взаи-
модействии с молекулами ПВП, что приводит 
к образованию нейтральных атомов Ag, раз-
личных молекулярных кластеров и увеличе-
нию поглощения света в спектральном диа-
пазоне 280–600 нм [15]. Стоит отметить, что 
ионные кластеры серебра (плазмонное погло-
щение в диапазоне 280–350 нм) формирова-
лись при использовании всех стабилизаторов 
в наших экспериментах: ПВП, ПЭГ, цитра-
та натрия, экстракта апельсина. Пик около 
420 нм на рис. 1 является характерным плаз-
монным пиком для квазисферических нано-
частиц серебра. Наночастицы, синтезирован-
ные с использованием ПВП, имели наиболее 
узкий, симметричный и наиболее интенсив-
ный плазмонный пик поглощения (спектр 1 на 
рис. 1). Золи Ag/ПВП были стабильны около 
двух недель. Однако дальнейшие исследова-

ния показали, что при связывании наноча-
стиц Ag с фталатами высокомолекулярный 
ПВП заметно ограничивает диффузию в золе.

При использовании в качестве восстанови-
теля ПЭГ более эффективно происходило об-
разование ионных кластеров серебра, чем на-
ночастиц Ag (спектр 2 на рис. 1). НЧ Ag/ПЭГ 
показали самый слабый по интенсивности 
плазмонный пик поглощения, кроме того, НЧ 
Ag/ПЭГ имели самую низкую стабильность 
(табл. 1). Использование НЧ Ag/ПЭГ для об-
наружения фталатов требует исследований 
in situ, так как в течение двух часов золь ме-
нял свои физико-химические характеристики 
(смещалась полоса поглощения НЧ, наблюда-
лось выпадение осадка, изменялась диспер-
сия по размерам НЧ).

Экстракты растений (например, апельсина 
и чайных листьев) также обладают способно-
стью восстанавливать соли серебра с после-
дующим образованием наночастиц металлов 
[10, 11]. При этом сохраняются плазмонные 
свойства НЧ Ag, которые используются, на-
пример, при регистрации поверхностно-уси-
ленного комбинационного рассеяния. Частицы, 
стабилизированные экстрактом апельсина, 
имели более широкое распределение по разме-
рам (спектр 3, рис. 1) по сравнению с ПВП, но 
были более стабильны (табл. 1). Дальнейшие 
исследования этих золей выявили следующие 
недостатки использования растительного экс-
тракта в качестве восстановителя-стабилиза-
тора: большие погрешности при измерениях 
спектров КР и атомно-силовой микроскопии, 
создаваемые органическими лигандами, не-
достаточная разработанность методов моди-
фикации поверхности наночастиц для даль-
нейшего связывания со фталатами.

НЧ Ag/цитрат синтезировали по хорошо 
зарекомендовавшему себя методу Туркевича 
с использованием цитратных солей [16]. Пер-
воначально этот метод был разработан для 
получения коллоидных наночастиц золота, 
а затем был модифицирован для синтеза на-
ночастиц серебра. В методе Туркевича в каче-
стве восстановителя-стабилизатора выступает 
цитрат натрия. В нашем случае основным вос-
становителем являлась аскорбиновая кисло-
та, а стабилизатором — цитрат. Соотношение 
концентраций ионов серебра и цитрат-иона, 
а также температура, продолжительность 
и скорость смешивания реагентов в процессе 

0,30

0,15

0,00

О
п

ти
ч

ес
к

ая
 п

л
от

н
ос

ть
, 

от
н

. 
ед

.

300                400                 500                600                 700

285
302

420
420

415

293

435

1

2

4

3

, нм

Рис. 1. Спектры оптической плотности 
водных растворов с НЧ серебра, измеренные 
в двухмиллиметровой кварцевой кювете. Вещества 
восстановители-стабилизаторы обозначены 
в следующем порядке: 1 — ПВП, 2 — ПЭГ, 3 — 

экстракт апельсина, 4 — цитрат натрия

Fig. 1. Optical density spectra of aqueous solutions 
with silver NPs, measured in a 2 mm quartz cell. 
Reducing agents-stabilizers are indicated in the 
following order: 1 — PVP, 2 — PEG, 3 — orange 

extract, 4 — sodium citrate
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синтеза оказывают большое влияние на раз-
мер наночастиц. Наиболее надёжная стаби-
лизация кластеров происходит при промежу-
точных концентрациях цитрата (1–5)10–4 М. 
Известно, что при синтезе НЧ серебра с ис-
пользованием цитрата в золе присутствуют 
как минимум две формы частиц: наносферы 
и продолговатые наночастицы [17]. На на-
шем спектре (данные 4 на рис. 1) основной 
плазмонный пик в области 420 нм относится 
к квазисферическим наночастицам, их кон-
центрация преобладающая, а вторичные 
пики в диапазоне 320–400 нм — к продолго-
ватым наночастицам. Синтезированные НЧ 
Ag/цитрат имели наилучшие характеристики 
для дальнейших исследований. Помимо ярко 
выраженного пика плазмонного поглощения 
и прозрачности золя, наночастицы обладали 
высокой стабильностью, универсальностью 
использования при выборе измерительной 
аппаратуры, наименьшими размерами и вы-
соким электрокинетическим потенциалом 
(для достаточно малых молекул и частиц вы-
сокий модуль  > 30 мВ означает устойчивость 
к агрегации) (табл. 2).

Таким образом, для дальнейших исследо-
ваний и формирования комплексов с дибу-
тилфталатом были выбраны наночастицы се-
ребра, стабилизированные цитратом натрия.

Модификация НЧ Ag и комплексы с ДБФ 
Известно, что изомеры фталатов и их произ-
водные используются, например, в металло-
органических каркасах. При этом фталаты 
могут образовывать координационные ком-
плексы с различными лигандами, в том числе 
с Cu2+ [18]. С другой стороны, Cu2+ взаимо-
действуют с нуклеотидами, включая ури-
дин [19, 20]. Cu2+ присоединяется в основном 
к фосфатным группам нуклеиновых кислот. 

Кроме того, нуклеотиды способны связывать-
ся с поверхностью наночастиц металлов за 
счёт взаимодействия функциональных групп 
(амины, карбонилы) азотистых оснований с 
поверхностью металла, при этом отрицатель-
но заряженная фосфатная группа стабилизи-
рует наночастицы, препятствуя их агрегации 
[21, 22]. Авторы работы [23] модифицирова-
ли поверхность НЧ золота различными моно-
нуклеотидами и ионами Cu2+ для обнару-
жения ди(2-этилгексил)фталата. Наши иссле-
дования по модификации наночастиц серебра 
Ag нуклеотидами показали лучшие результа-
ты при использовании уридин 5′-трифосфата 
по сравнению с дезоксиаденозинтрифосфатом 
(дАТФ). Концентрация синтезированных на-
ночастиц в исходном растворе составляла около 
21011 см–3 и была рассчитана с использовани-
ем закона поглощения Бугера–Ламберта–Бера:

ext
,

lg
D

n
d eC

=

где D — оптическая плотность раствора, 
d — толщина исследуемого слоя вещества, 
lge  0,434, Cext — сечение экстинкции нано-
частиц серебра, который справедлив в нашем 
случае благодаря схожести характеров спек-
тров Cext() и D() наночастиц. В общем слу-
чае сечение экстинкции складывается из се-
чения поглощения (Csca) и сечения рассеяния 
(Csca):  Cext = Cabs + Csca. Для НЧ металлов 
с размерами до 50 нм преобладает процесс по-
глощения падающих фотонов, тогда для рас-
чёта сечения экстинкции можно воспользо-
ваться следующим выражением согласно [24]: 
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Таблица 2. Результаты характеризации синтезированных НЧ Ag с помощью динамического рассеяния света 
Table 2. Characterization results of the synthesized Ag NPs using dynamic light scattering

Вещество 
восстановитель-

стабилизатор

Положение 
плазмонного 

пика, нм

Гидродинамический 
диаметр НЧ, нм

-потенциал, 
мВ

Проводимость, 
мСм/см

ПВП (in situ) 415 427 –2,5 6,0

ПЭГ (in situ) 435 326 –0,1 13,0

Экстракт апельсина (in situ) 420 168 –5,0 6,0

Цитрат натрия (in situ) 420 32 –34,0 0,3
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где a — радиус наночастицы, m — диэлек-
трическая проницаемость среды, r — дей-
ствительная часть диэлектрической прони-
цаемости металла, i — мнимая часть диэлек-
трической проницаемости металла. При этом 
диэлектрические проницаемости среды и ме-
талла являются функциями длины волны  
падающего электромагнитного поля. При мо-
дификации поверхности мольное соотноше-
ние уридин 5′-трифосфата и наночастиц сере-
бра составляло около 3000 ед.

Исследования взаимодействия НЧ Ag/УТФ 
с ионами меди показали нелинейный харак-
тер зависимости плазмонного пика наноча-
стиц от концентрации меди (концентрация 
CuCl2 варьировалась в диапазоне 0,004–4 мM). 
Стоит отметить, что при высоком молярном 
соотношении ионов меди к НЧ Ag/УТФ нано-
частицы выпадают в осадок. Оптимальное со-
отношение между Cu2+ и наночастицами бы-
ло выбрано по максимальной интенсивности 
плазмонного пика наночастиц, который до-
стигался при концентрации CuCl2 в 0,04 мМ 
в исходном растворе и мольном соотношении 
ионов меди около 37000 ед. к НЧ. 

Объёмная добавка гетерогенной смеси 
ДБФ, содержащей 10 мкл чистого ДБФ в 1 мл 
воды, составляла 10 мкл к 50 мкл раство-
ра модифицированных НЧ, 10 мкл раство-

ра CuCl2 и 30 мкл дистиллированной воды. 
Итоговая концентрация фталата как опреде-
ляемого аналита составляла около 0,1 мг/мл. 
Плазмонный пик поглощения НЧ на спектре 
оптической плотности органо-неорганической 
композиции Ag/УТФ-Cu2+-ДБФ (не пред-
ставлен) не претерпел значимых изменений 
при выбранной концентрации фталата, одна-
ко были зарегистрированы характерные пи-
ки ДБФ в УФ области спектра. Для установ-
ления и подтверждения фактов связывания 
пар Ag/УТФ-Cu2+ или УТФ-Cu2+, Cu2+-ДБФ 
и Ag/УТФ-Cu2+-ДБФ были проведены изме-
рения с помощью спектроскопии комбина-
ционного рассеяния. Представлены наиболее 
информативные изменения в спектрах КР, 
которые наблюдались в низкоэнергетическом 
диапазоне. Спектры на рис. 2a демонстрируют 
процессы стабилизации наночастиц серебра 
цитратом натрия и модификации УТФ.

Из сравнения спектров 1 и 2 на рис. 2а видно, 
что при взаимодействии наночастиц с лиган-
дом большинство пиков смещаются в область 
меньших энергий, что соотносится с появле-
нием механических напряжений в молекуляр-
ной структуре. Наличие пика около 229 см–1, 
который соответствует колебаниям связи Ag-
OCO–, полностью подтверждает присоедине-
ние цитрата к поверхности наночастиц [25]. 
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Рис. 2. Спектры КР водных растворов (а), где 1 — цитрат натрия, 2 — НЧ Ag, стабилизированные 
цитратом, 3 — НЧ Ag, стабилизированные цитратом и модифицированные УТФ; (б) где 1 — ДБФ, 2 — 

водного раствора УТФ, 3 — водного раствора УТФ–ДБФ

Fig. 2. Raman spectra of (a) aqueous solutions where 1 — sodium citrate, 2 — Ag NPs stabilized by citrate, 
3 — Ag NPs stabilized by citrate and modified with UTP; (б) 1 — DBP, 2 — aqueous solution UTP, 

3 — aqueous solution UTP–DBP
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При добавлении УТФ в спектре НЧ/цитрат про-
исходит важное изменение: пик на 229 см–1 про-
падает и появляется более интенсивный и уз-
кий на 240 см–1 (спектр 3 на рис. 2а). Данный 
пик соответствует колебаниям связи Ag-N, 
которая образуется между молекулой УТФ и 
наночастицой [26]. Таким образом, УТФ за-
мещает цитрат на поверхности наночастицы и 
становится новым стабилизатором. 

Исследования пары ДБФ-УТФ показали, 
что в спектре раствора, содержащего ДБФ 
и уридин (спектр 3 на рис. 2б), наблюдаются 
только пики, характерные для этих веществ 
в отдельности (спектры 1 и 2 на рис. 2б соот-
ветственно). Из чего следует взаимная хими-
ческая инертность ДБФ и уридина. 

При добавлении CuCl2 к раствору УТФ 
(спектр 1 на рис. 3а) колебательная структу-
ра на спектре уридина (спектр 2 на рис. 2б) 
меняется, появляются новые пики 115, 226, 
246, 394 см–1. Происходит образование новых 
химических связей, будь то кислородные или 
азотные мостики. 

При добавлении CuCl2 к фталату структу-
ра спектра чистого ДБФ (спектр 1 на рис. 2б) 
усложняется, появляются новые пики 104, 
173, 215 и 287 см–1 (спектр 2 на рис. 3а), соот-
ветствующие новым колебательным модам. 
Ионы меди соединяются со фталатами через 
кислород, следовательно, пик 287 см–1 в паре 
ДБФ-Cu2+, как и пик 292 см–1 в Cu(OH)2 [27], 

соответствует связи Cu2+–О. Сам по себе хло-
рид меди, растворённый в воде, диссоциирует 
на ионы, которые образуют сложные гидрок-
сокомплексы, имеющие слабый отклик ком-
бинационного рассеяния. 

Спектр КР композиции УТФ-Cu2+-ДБФ 
(данные 3, рис. 3а) в значительной мере отли-
чался от спектра пары ДБФ-УТФ (данные 3, 
рис. 2б). Большинство пиков, характерных 
для ДБФ и уридина, не наблюдалось, но были 
зарегистрированы 3 новых: 112, 182, 297 см–1. 
В частности, пик около 297 см–1 на спектре 
композиции УТФ-Cu2+-ДБФ по спектрально-
му положению и форме, предположительно, 
имеет ту же физическую природу, что и пик 
287 см–1 на спектре пары ДБФ-Cu2+ (дан-
ные 2, рис. 3а). Из сопоставления спектров 2 
и 3 на рис. 3а видно, что характер химиче-
ских связей в целом меняется, что указывает 
на соединение молекул уридина и ДБФ че-
рез ионы меди. Спектр КР композиции с НЧ 
Ag/УТФ-Cu2+-ДБФ (не представлен) не имел 
значимых изменений относительно спектра 
УТФ-Cu2+-ДБФ. Таким образом, мы можем го-
ворить об успешной транформации лигандной 
оболочки НЧ молекулами уридина, а также 
образовании химических связей между ними 
и фталатом посредством ионов меди (рис. 3б). 

На рис. 4 приведены снимки исходных НЧ 
Ag, стабилизированных цитратом, и полу-
ченных комплексов НЧ Ag/УТФ-Cu2+-ДБФ, 

Рис. 3. Спектры КР водных растворов (a), где 1 — УТФ–CuCl2, 2 — ДБФ–CuCl2, 3 — УТФ–CuCl2–ДБФ; 
иллюстрация связывания в комплекс НЧ Ag/УТФ, ионов меди и ДБФ (б)

Fig. 3. (a) Raman spectra of aqueous solutions, where 1 — UTP-CuCl2, 2 — DBP–CuCl2, 3 — 
UTP–CuCl2–DBP; (б) illustration of the binding into the complex of Ag/UTP NPs, copper ions and DBP

И
н

те
н

си
вн

ос
ть

, 
от

н
. 

ед
.

150                  300                  450                  600                  750

1

2
3

1,0

0,8

0,6

0,4

0,2

Волновое число, см–1

(а) (б)



ОПТИЧЕСКИЙ ЖУРНАЛ. 2023. Том 90. № 10. С. 116–128 125Научная статья

исследованных с помощью просвечивающей 
электронной микроскопии. 

Полученные снимки (рис. 4) обнаруживают 
существенные различия в механизмах агло-
мерации наночастиц серебра. Исходные нано-
частицы серебра после осаждения из золя ска-
пливались/агрегировали за счёт сил поверх-
ностного натяжения и ван-дер-ваальсовых 
сил достаточно хаотично. Частицы же в ком-
плексе, содержащем фталат (рис. 4б), обра-
зовывали дендрит-подобные структуры, ука-
зывающие на превалирование определённых 
направлений соединения НЧ серебра, веро-
ятно, соответствующих химическим связям 
в гибридной системе. Таким образом, полу-
ченные результаты подтверждают факт свя-
зывания между собой НЧ Ag, модифициро-
ванных уридин-5′-трифосфатом, с ДБФ, при 
котором ионы Cu2+ выполняют роль сшива-
ющего агента. Отметим, что выше означенное 
количество ДБФ не является пределом обна-
ружения с помощью комплексов с НЧ Ag.

Проведённые исследования представляют 
интерес для развития технологий сенсорного 
детектирования при помощи органо-неорга-
нических соединений. По сравнению с суще-
ствующими сегодня лабораторными метода-
ми детектирования фталатов использование 
металлических наночастиц обладает преиму-
ществами: простотой приготовления анали-
тических проб, широким спектром доступ-
ного аналитического оборудования. Помимо 
крайне актуального сегодня эколого-биоло-
гического значения, проведённые исследова-

Рис. 4. ПЭМ изображения следующих образцов: НЧ Ag/цитрат (a), комплексы Ag/УТФ–Cu2+–ДБФ (б)

Fig. 4. TEM images of the following samples: (a) Ag/citrate NPs, (б) Ag/UTP–Cu2+–DBP complexes

(а) (б)

10 нм 100 нм

ния гибридных систем на основе наночастиц 
серебра вносят вклад в развитие методов пас-
сивации поверхности металлических нано-
частиц.

ВЫВОДЫ
Методами оптической спектроскопии, просве-
чивающей электронной микроскопии, дина-
мического рассеяния света, комбинационного 
рассеяния света проведены физико-химиче-
ские исследования золей наночастиц сере-
бра, синтезированных с использованием че-
тырёх агентов, выступающих одновременно 
в роли восстановителя и стабилизатора. Уста-
новлено, что наиболее подходящий стабили-
затор для применения НЧ в качестве сенсоров 
ДБФ — это цитрат натрия, который замещает-
ся на уридин-5′-трифосфат при последующей 
модификации поверхности наночастиц. Для 
успешного связывания наночастиц Ag/УТФ 
со фталатом ДБФ в водных растворах важ-
ным параметром является молярное соотно-
шение НЧ Ag/УТФ и ионов меди Cu2+. Успеш-
ное формирование комплексов Ag/УТФ-Cu2+-
ДБФ подтверждено с помощью спектроскопии 
комбинационного рассеяния и ПЭМ. Таким 
образом, проведён полный цикл исследований 
от синтеза до установления принципиальной 
возможности использования металлических 
наночастиц серебра в качестве наносенсоров 
для определения дибутилфталата в водных 
средах без использования спирта и буферных 
растворов.
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